A dynamic RNA loop in an IRES affects multiple steps of elongation factor-mediated translation initiation

  1. Marisa Ruehle
  2. Haibo Zhang
  3. Ryan M Sheridan
  4. Somdeb Mitra
  5. Yuanwei Chen
  6. Ruben L Gonzalez
  7. Barry S Cooperman
  8. Jeffrey S Kieft  Is a corresponding author
  1. Howard Hughes Medical Institute, University of Colorado Denver School of Medicine, United States
  2. University of Pennsylvania, United States
  3. Columbia University, United States

Abstract

Internal ribosome entry sites (IRESs) are powerful model systems to understand how the translation machinery can be manipulated by structured RNAs and for exploring inherent features of ribosome function. The intergenic region (IGR) IRESs from the Dicistroviridae family of viruses are structured RNAs that bind directly to the ribosome and initiate translation by co-opting the translation elongation cycle. These IRESs require an RNA pseudoknot that mimics a codon-anticodon interaction and contains a conformationally dynamic loop. We explored the role of this loop and found that both the length and sequence are essential for translation in different types of IGR IRESs and from diverse viruses. We found that loop 3 affects two discrete elongation factor-dependent steps in the IRES initiation mechanism. Our results show how the IRES directs multiple steps after 80S ribosome placement and highlights the often underappreciated significance of discrete conformationally dynamic elements within the context of structured RNAs.

Article and author information

Author details

  1. Marisa Ruehle

    Department of Biochemistry and Molecular Genetics, Howard Hughes Medical Institute, University of Colorado Denver School of Medicine, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Haibo Zhang

    Department of Chemistry, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ryan M Sheridan

    Department of Biochemistry and Molecular Genetics, Howard Hughes Medical Institute, University of Colorado Denver School of Medicine, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Somdeb Mitra

    Department of Chemistry, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Yuanwei Chen

    Department of Chemistry, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Ruben L Gonzalez

    Department of Chemistry, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Barry S Cooperman

    Department of Chemistry, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Jeffrey S Kieft

    Department of Biochemistry and Molecular Genetics, Howard Hughes Medical Institute, University of Colorado Denver School of Medicine, Aurora, United States
    For correspondence
    jeffrey.kieft@ucdenver.edu
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2015, Ruehle et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,181
    views
  • 588
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Marisa Ruehle
  2. Haibo Zhang
  3. Ryan M Sheridan
  4. Somdeb Mitra
  5. Yuanwei Chen
  6. Ruben L Gonzalez
  7. Barry S Cooperman
  8. Jeffrey S Kieft
(2015)
A dynamic RNA loop in an IRES affects multiple steps of elongation factor-mediated translation initiation
eLife 4:e08146.
https://doi.org/10.7554/eLife.08146

Share this article

https://doi.org/10.7554/eLife.08146

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Ana Patrícia Graça, Vadim Nikitushkin ... Gerald Lackner
    Research Article

    Mycofactocin is a redox cofactor essential for the alcohol metabolism of mycobacteria. While the biosynthesis of mycofactocin is well established, the gene mftG, which encodes an oxidoreductase of the glucose-methanol-choline superfamily, remained functionally uncharacterized. Here, we show that MftG enzymes are almost exclusively found in genomes containing mycofactocin biosynthetic genes and are present in 75% of organisms harboring these genes. Gene deletion experiments in Mycolicibacterium smegmatis demonstrated a growth defect of the ∆mftG mutant on ethanol as a carbon source, accompanied by an arrest of cell division reminiscent of mild starvation. Investigation of carbon and cofactor metabolism implied a defect in mycofactocin reoxidation. Cell-free enzyme assays and respirometry using isolated cell membranes indicated that MftG acts as a mycofactocin dehydrogenase shuttling electrons toward the respiratory chain. Transcriptomics studies also indicated remodeling of redox metabolism to compensate for a shortage of redox equivalents. In conclusion, this work closes an important knowledge gap concerning the mycofactocin system and adds a new pathway to the intricate web of redox reactions governing the metabolism of mycobacteria.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Santi Mestre-Fos, Lucas Ferguson ... Jamie HD Cate
    Research Article

    Stem cell differentiation involves a global increase in protein synthesis to meet the demands of specialized cell types. However, the molecular mechanisms underlying this translational burst and the involvement of initiation factors remains largely unknown. Here, we investigate the role of eukaryotic initiation factor 3 (eIF3) in early differentiation of human pluripotent stem cell (hPSC)-derived neural progenitor cells (NPCs). Using Quick-irCLIP and alternative polyadenylation (APA) Seq, we show eIF3 crosslinks predominantly with 3’ untranslated region (3’-UTR) termini of multiple mRNA isoforms, adjacent to the poly(A) tail. Furthermore, we find that eIF3 engagement at 3’-UTR ends is dependent on polyadenylation. High eIF3 crosslinking at 3’-UTR termini of mRNAs correlates with high translational activity, as determined by ribosome profiling, but not with translational efficiency. The results presented here show that eIF3 engages with 3’-UTR termini of highly translated mRNAs, likely reflecting a general rather than specific regulatory function of eIF3, and supporting a role of mRNA circularization in the mechanisms governing mRNA translation.