Prefrontal dopamine regulates fear reinstatement through the downregulation of extinction circuits

  1. Natsuko Hitora-Imamura
  2. Yuki Miura
  3. Chie Teshirogi
  4. Yuji Ikegaya
  5. Norio Matsuki
  6. Hiroshi Nomura  Is a corresponding author
  1. Hokkaido University, Japan
  2. University of Tokyo, Japan
  3. University of North Carolina at Chapel Hill, United States

Abstract

Prevention of relapses is a major challenge in treating anxiety disorders. Fear reinstatement can cause relapse in spite of successful fear reduction through extinction-based exposure therapy. By utilising a contextual fear-conditioning task in mice, we found that reinstatement was accompanied by decreased c-Fos expression in the infralimbic cortex (IL) with reduction of synaptic input and enhanced c-Fos expression in the medial subdivision of the central nucleus of the amygdala (CeM). Moreover, we found that IL dopamine plays a key role in reinstatement. A reinstatement-inducing reminder shock induced c-Fos expression in the IL-projecting dopaminergic neurons in the ventral tegmental area, and the blocking of IL D1 signalling prevented reduction of synaptic input, CeM c-Fos expression and fear reinstatement. These findings demonstrate that a dopamine-dependent inactivation of extinction circuits underlies fear reinstatement and may explain the comorbidity of substance use disorders and anxiety disorders.

Article and author information

Author details

  1. Natsuko Hitora-Imamura

    Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  2. Yuki Miura

    Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Chie Teshirogi

    Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Yuji Ikegaya

    Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Norio Matsuki

    Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Hiroshi Nomura

    Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, United States
    For correspondence
    h-nomu@umin.ac.jp
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Marlene Bartos, Albert-Ludwigs-Universität Freiburg, Germany

Ethics

Animal experimentation: All experiments were approved by the animal experiment ethics committee at The University of Tokyo (approval number 24-10) and were in accordance with The University of Tokyo guidelines for the care and use of laboratory animals. All surgery was performed under xylazine and pentobarbital anesthesia, and every effort was made to minimize suffering.

Version history

  1. Received: April 23, 2015
  2. Accepted: July 29, 2015
  3. Accepted Manuscript published: July 30, 2015 (version 1)
  4. Version of Record published: August 24, 2015 (version 2)

Copyright

© 2015, Hitora-Imamura et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,665
    views
  • 703
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Natsuko Hitora-Imamura
  2. Yuki Miura
  3. Chie Teshirogi
  4. Yuji Ikegaya
  5. Norio Matsuki
  6. Hiroshi Nomura
(2015)
Prefrontal dopamine regulates fear reinstatement through the downregulation of extinction circuits
eLife 4:e08274.
https://doi.org/10.7554/eLife.08274

Share this article

https://doi.org/10.7554/eLife.08274

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Bohan Zhu, Richard I Ainsworth ... Javier González-Maeso
    Research Article

    Genome-wide association studies have revealed >270 loci associated with schizophrenia risk, yet these genetic factors do not seem to be sufficient to fully explain the molecular determinants behind this psychiatric condition. Epigenetic marks such as post-translational histone modifications remain largely plastic during development and adulthood, allowing a dynamic impact of environmental factors, including antipsychotic medications, on access to genes and regulatory elements. However, few studies so far have profiled cell-specific genome-wide histone modifications in postmortem brain samples from schizophrenia subjects, or the effect of antipsychotic treatment on such epigenetic marks. Here, we conducted ChIP-seq analyses focusing on histone marks indicative of active enhancers (H3K27ac) and active promoters (H3K4me3), alongside RNA-seq, using frontal cortex samples from antipsychotic-free (AF) and antipsychotic-treated (AT) individuals with schizophrenia, as well as individually matched controls (n=58). Schizophrenia subjects exhibited thousands of neuronal and non-neuronal epigenetic differences at regions that included several susceptibility genetic loci, such as NRG1, DISC1, and DRD3. By analyzing the AF and AT cohorts separately, we identified schizophrenia-associated alterations in specific transcription factors, their regulatees, and epigenomic and transcriptomic features that were reversed by antipsychotic treatment; as well as those that represented a consequence of antipsychotic medication rather than a hallmark of schizophrenia in postmortem human brain samples. Notably, we also found that the effect of age on epigenomic landscapes was more pronounced in frontal cortex of AT-schizophrenics, as compared to AF-schizophrenics and controls. Together, these data provide important evidence of epigenetic alterations in the frontal cortex of individuals with schizophrenia, and remark for the first time on the impact of age and antipsychotic treatment on chromatin organization.

    1. Neuroscience
    Aedan Yue Li, Natalia Ladyka-Wojcik ... Morgan Barense
    Research Article

    Combining information from multiple senses is essential to object recognition, core to the ability to learn concepts, make new inferences, and generalize across distinct entities. Yet how the mind combines sensory input into coherent crossmodal representations - the crossmodal binding problem - remains poorly understood. Here, we applied multi-echo fMRI across a four-day paradigm, in which participants learned 3-dimensional crossmodal representations created from well-characterized unimodal visual shape and sound features. Our novel paradigm decoupled the learned crossmodal object representations from their baseline unimodal shapes and sounds, thus allowing us to track the emergence of crossmodal object representations as they were learned by healthy adults. Critically, we found that two anterior temporal lobe structures - temporal pole and perirhinal cortex - differentiated learned from non-learned crossmodal objects, even when controlling for the unimodal features that composed those objects. These results provide evidence for integrated crossmodal object representations in the anterior temporal lobes that were different from the representations for the unimodal features. Furthermore, we found that perirhinal cortex representations were by default biased towards visual shape, but this initial visual bias was attenuated by crossmodal learning. Thus, crossmodal learning transformed perirhinal representations such that they were no longer predominantly grounded in the visual modality, which may be a mechanism by which object concepts gain their abstraction.