Starvation promotes concerted modulation of appetitive olfactory behavior via parallel neuromodulatory circuits

6 figures and 1 table

Figures

Figure 1 with 1 supplement
Starvation state fine-tunes appetitive behavior.

(A) A single fly assay was used to measure food search behavior. The coordinates of representative fed (left) and starved (right) flies show their positions during a 10-min period in response to 5% …

https://doi.org/10.7554/eLife.08298.003
Figure 1—figure supplement 1
Food search behavior in control and knockdown flies.

(A) The appetitive index of fed control and sNPFR knockdown flies compared to a starved Orco-Gal4 control. n = 60–124 for each condition. (B) The appetitive index of the fed control and DTKR …

https://doi.org/10.7554/eLife.08298.004
Figure 2 with 1 supplement
Starvation-dependent neuropeptide signaling modulates sensitivity of the DM1 and DM5 glomeruli.

(A) Representative two photon images of projection neuron (PN) dendritic calcium responses to 80% saturated vapor (SV) of apple cider vinegar in starved DTKR knockdown flies. Grey-scale images show …

https://doi.org/10.7554/eLife.08298.006
Figure 2—source data 1

Glomerular responses to vinegar in fed and starved flies.

https://doi.org/10.7554/eLife.08298.007
Figure 2—figure supplement 1
PN responses to vinegar in flies with DTKR knockdown.

Two-photon imaging of PN dendritic calcium responses. (A) Peak ΔF/F in glomeruli that are activated by 80% SV cider vinegar in control and DTKR knockdown flies. (B) Peak ΔF/F in the DM1 glomerulus …

https://doi.org/10.7554/eLife.08298.008
Tachykinin released by antennal lobe local interneurons (LNs) is necessary for starvation-dependent suppression of DM5 glomerular activity.

(A) Representative traces showing ΔF/F in the DM5 glomerulus in flies that have UAS-DTK-RNAi in ORNs (Orco-Gal4) or in LNs (GH298-Gal4). Bar graph depicts peak ΔF/F for each indicated genotype. …

https://doi.org/10.7554/eLife.08298.009
sNPF and DTK modulatory mechanisms target different sensory neurons.

(A, B) Representative traces of calcium activity (left) in the DM1 and DM5 PNs in response to olfactory nerve stimulation before and after bath application of sNPF (A) or DTK (B) synthetic peptides. …

https://doi.org/10.7554/eLife.08298.010
Insulin controls DTKR signaling.

(A) Peak ΔF/F responses of the DM5 glomerulus to cider vinegar (left) and the appetitive index of flies (right) that were fed overnight with 4% sucrose alone or sucrose with the PI3K blocker, …

https://doi.org/10.7554/eLife.08298.011
How starvation changes early olfactory processing.

(A) A schematic diagram depicting anatomical locations for Or42b and Or85a ORNs in the fly antenna as well as their corresponding glomeruli, DM1 and DM5, respectively, in the antennal lobe. LNs …

https://doi.org/10.7554/eLife.08298.012

Tables

Table 1

Differentially expressed GPCRs in the antennae of fed and starved flies

https://doi.org/10.7554/eLife.08298.005
FlyBase IDGeneGene nameCount ratiop-valueFPKM starved
A. Receptors for biogenic amines and related compounds
 FBgn0011582DopRDopamine receptor1.520.0002.59
 FBgn0053517D2RDopamine 2-like receptor1.320.0011.63
 FBgn0038980oa2Octopamine receptor 21.290.00019.64
 FBgn0038542TyrRTyramine receptor1.230.0200.85
 FBgn00041685-HT1ASerotonin receptor 1A1.210.0008.27
 FBgn0250910Octbeta3ROctbeta3R1.200.00017.00
 FBgn0037546mAChR-Bmuscarinic Acetylcholine Receptor, B-type1.180.00010.28
 FBgn0004514Oct-TyrROctopamine-Tyramine receptor1.160.0212.09
 FBgn00870125-HT2Serotonin receptor 21.150.00010.50
 FBgn0024944OambOctopamine receptor in mushroom bodies1.150.00037.92
 FBgn0000037mAcR-60Cmuscarinic Acetylcholine receptor 60C1.140.0006.74
 FBgn0035538DopEcRDopamine/Ecdysteroid receptor1.080.000133.42
 FBgn0015129DopR2Dopamine receptor 21.070.0444.67
 FBgn0038063Octbeta2ROctbeta2R0.790.0031.30
B. Peptide receptors
 FBgn0039396CcapRCardioacceleratory peptide receptor2.420.0170.13
 FBgn0004622Takr99DTachykinin-like receptor at 99D1.670.0290.28
 FBgn0003255rkrickets1.500.0000.98
 FBgn0033579CG132291.450.0021.78
 FBgn0053696CNMaRCNMamide Receptor1.440.0190.51
 FBgn0036934sNPF-Rshort neuropeptide F receptor1.410.0007.26
 FBgn0028961AlstRAllatostatin receptor1.300.0110.85
 FBgn0035331DmsR-1Dromyosuppressin receptor 11.260.0031.59
 FBgn0038880SIFRSIFamide receptor1.200.0002.78
 FBgn0259231CCKLR-17D1CCK-like receptor at 17D11.130.00068.50
 FBgn0025631moodymoody1.090.00050.86
 FBgn0016650FshFsh-Tsh-like receptor1.080.0217.74
 FBgn0085410TrissinRTrissin receptor1.060.02515.30
 FBgn0038874ETHRETHR0.940.00321.31
 FBgn0031770CG139950.910.00015.93
 FBgn0004841Takr86CTachykinin-like receptor at 86C0.910.0166.86
 FBgn0029723Proc-RProctolin receptor0.890.0056.22
 FBgn0030954CCKLR-17D3CCK-like receptor at 17D30.790.0008.62
 FBgn0025595AkhRAdipokinetic hormone receptor0.740.00011.06
 FBgn0038201Pk1rPyrokinin 1 receptor0.670.00011.58
 FBgn0039354Lgr3Lgr30.510.0000.24
 FBgn0039595AR-2Allatostatin receptor 20.390.0020.11
C. Metabotropic glutamate receptor family
 FBgn0050361mttmangetout3.270.0000.54
 FBgn0019985mGluRAmetabotropic glutamate receptor1.940.0001.14
 FBgn0052447CG324471.890.0004.27
 FBgn0031275GABA-B-R3GABA-B receptor subtype 31.270.0002.44
 FBgn0051760CG317601.170.0006.36
 FBgn0051660pogpoor gastrulation1.160.00034.68
 FBgn0260446GABA-B-R1GABA-B receptor subtype 11.160.00033.18
 FBgn0085401CG343721.100.0333.96
 FBgn0027575GABA-B-R2GABA-B receptor subtype 20.940.00027.45
  1. Each RNA sample was from the antennae of 200 female flies (w1118;+;Orco-Gal4/+). Count ratio is the number of reads aligned to each gene between starved and satiated flies. FPKM, fragment per kilobase of exon per million mapped fragments. p-values were calculated on raw counts using the Fisher's exact test in edgeR package.

Download links