A principle of economy predicts the functional architecture of grid cells

  1. Xue-xin Wei
  2. Jason Prentice
  3. Vijay Balasubramanian  Is a corresponding author
  1. University of Pennsylvania, United States
  2. Princeton University, United States

Abstract

Grid cells in the brain respond when an animal occupies a periodic lattice of 'grid fields' during navigation. Grids are organized in modules with different periodicity. We propose that the grid system implements a hierarchical code for space that economizes the number of neurons required to encode location with a given resolution across a range equal to the largest period. This theory predicts: (i) grid fields should lie on a triangular lattice, (ii) grid scales should follow a geometric progression, (iii) the ratio between adjacent grid scales should be e^1/2 for idealized neurons, and lie between 1.4-1.7 for realistic neurons, (iv) the scale ratio should vary modestly within and between animals. These results explain the measured grid structure in rodents. We also predict optimal organization in one and three dimensions, the number of modules, and, with added assumptions, the ratio between grid periods and field widths.

Article and author information

Author details

  1. Xue-xin Wei

    Department of Psychology, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jason Prentice

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Vijay Balasubramanian

    Department of Physics, University of Pennsylvania, Philadelphia, United States
    For correspondence
    vijay@physics.upenn.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Frances K Skinner, University Health Network, Canada

Version history

  1. Received: April 27, 2015
  2. Accepted: September 1, 2015
  3. Accepted Manuscript published: September 3, 2015 (version 1)
  4. Version of Record published: October 23, 2015 (version 2)

Copyright

© 2015, Wei et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,283
    views
  • 676
    downloads
  • 65
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xue-xin Wei
  2. Jason Prentice
  3. Vijay Balasubramanian
(2015)
A principle of economy predicts the functional architecture of grid cells
eLife 4:e08362.
https://doi.org/10.7554/eLife.08362

Share this article

https://doi.org/10.7554/eLife.08362

Further reading

    1. Neuroscience
    Olivier Codol, Jonathan A Michaels ... Paul L Gribble
    Tools and Resources

    Artificial neural networks (ANNs) are a powerful class of computational models for unravelling neural mechanisms of brain function. However, for neural control of movement, they currently must be integrated with software simulating biomechanical effectors, leading to limiting impracticalities: (1) researchers must rely on two different platforms and (2) biomechanical effectors are not generally differentiable, constraining researchers to reinforcement learning algorithms despite the existence and potential biological relevance of faster training methods. To address these limitations, we developed MotorNet, an open-source Python toolbox for creating arbitrarily complex, differentiable, and biomechanically realistic effectors that can be trained on user-defined motor tasks using ANNs. MotorNet is designed to meet several goals: ease of installation, ease of use, a high-level user-friendly application programming interface, and a modular architecture to allow for flexibility in model building. MotorNet requires no dependencies outside Python, making it easy to get started with. For instance, it allows training ANNs on typically used motor control models such as a two joint, six muscle, planar arm within minutes on a typical desktop computer. MotorNet is built on PyTorch and therefore can implement any network architecture that is possible using the PyTorch framework. Consequently, it will immediately benefit from advances in artificial intelligence through PyTorch updates. Finally, it is open source, enabling users to create and share their own improvements, such as new effector and network architectures or custom task designs. MotorNet’s focus on higher-order model and task design will alleviate overhead cost to initiate computational projects for new researchers by providing a standalone, ready-to-go framework, and speed up efforts of established computational teams by enabling a focus on concepts and ideas over implementation.

    1. Neuroscience
    Meike E van der Heijden, Amanda M Brown ... Roy V Sillitoe
    Research Article

    The cerebellum contributes to a diverse array of motor conditions, including ataxia, dystonia, and tremor. The neural substrates that encode this diversity are unclear. Here, we tested whether the neural spike activity of cerebellar output neurons is distinct between movement disorders with different impairments, generalizable across movement disorders with similar impairments, and capable of causing distinct movement impairments. Using in vivo awake recordings as input data, we trained a supervised classifier model to differentiate the spike parameters between mouse models for ataxia, dystonia, and tremor. The classifier model correctly assigned mouse phenotypes based on single-neuron signatures. Spike signatures were shared across etiologically distinct but phenotypically similar disease models. Mimicking these pathophysiological spike signatures with optogenetics induced the predicted motor impairments in otherwise healthy mice. These data show that distinct spike signatures promote the behavioral presentation of cerebellar diseases.