Rapid learning in visual cortical networks

  1. Ye Wang
  2. Valentin Dragoi  Is a corresponding author
  1. The University of Texas Medical School at Houston, United States

Abstract

Although changes in brain activity during learning have been extensively examined at the single neuron level, the coding strategies employed by cell populations remain mysterious. We examined neuronal populations in macaque area V4 during a rapid form of perceptual learning that emerges within tens of minutes. Multiple single-units and LFP responses were recorded as monkeys improved their performance in an image discrimination task. We show that the increase in behavioral performance during learning is predicted by a tight coordination of spike timing with local population activity. More spike-LFP theta synchronization is correlated with higher learning performance while high-frequency synchronization is unrelated with changes in performance, but these changes were absent once learning had stabilized and stimuli became familiar or in the absence of learning. These findings reveal a novel mechanism of plasticity in visual cortex by which elevated low-frequency synchronization between individual neurons and local population activity accompanies the improvement in performance during learning.

Article and author information

Author details

  1. Ye Wang

    Department of Neurobiology and Anatomy, The University of Texas Medical School at Houston, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Valentin Dragoi

    Department of Neurobiology and Anatomy, The University of Texas Medical School at Houston, Houston, United States
    For correspondence
    Valentin.Dragoi@uth.tmc.edu
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (AWC-14-0114) of the Texas Health Science Center at Houston. The protocol was approved by the Committee on the Ethics of Animal Experiments of the Texas Health Science Center at Houston. All surgery was performed under isoflurane anesthesia, and every effort was made to minimize suffering.

Copyright

© 2015, Wang & Dragoi

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,670
    views
  • 386
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ye Wang
  2. Valentin Dragoi
(2015)
Rapid learning in visual cortical networks
eLife 4:e08417.
https://doi.org/10.7554/eLife.08417

Share this article

https://doi.org/10.7554/eLife.08417