ANGPTL4 mediates shuttling of lipid fuel to brown adipose tissue during sustained cold exposure
Abstract
Brown adipose tissue (BAT) activation via cold exposure is increasingly scrutinized as a potential approach to ameliorate cardio-metabolic risk. Transition to cold temperatures requires changes in the partitioning of energy substrates, re-routing fatty acids to BAT to fuel non-shivering thermogenesis. However, the mechanisms behind the redistribution of energy substrates to BAT remain largely unknown. Angiopoietin-like 4 (ANGPTL4), a protein that inhibits lipoprotein lipase (LPL) activity, is highly expressed in BAT. Here, we demonstrate that ANGPTL4 is part of a shuttling mechanism that directs fatty acids derived from circulating triglyceride-rich lipoproteins to BAT during cold. Specifically, we show that cold markedly down-regulates ANGPTL4 in BAT, likely via activation of AMPK, enhancing LPL activity and uptake of plasma triglyceride-derived fatty acids. In contrast, cold up-regulates ANGPTL4 in WAT, abolishing a cold-induced increase in LPL activity. Together, our data indicate that ANGPTL4 is an important regulator of plasma lipid partitioning during sustained cold.
Article and author information
Author details
Ethics
Animal experimentation: This study was performed in accordance with Directive 2010/63/EU from the European Union. All of the animals were handled according to protocols approved by the Animal Ethics Committees of Wageningen University and Hamburg University (2013007.d, 2013100.b and 34/12).
Human subjects: All subjects signed an informed consent for the study protocol, which was approved by the institutional review board of Maastricht University Medical Centre.
Copyright
© 2015, Dijk et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 4,088
- views
-
- 1,024
- downloads
-
- 109
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Citations by DOI
-
- 109
- citations for umbrella DOI https://doi.org/10.7554/eLife.08428