Muscle niche-driven Insulin-Notch-Myc cascade reactivates dormant Adult Muscle Precursors in Drosophila

  1. Rajaguru Aradhya
  2. Monika Zmojdzian
  3. Jean Philippe Da Ponte
  4. Krzysztof Jagla  Is a corresponding author
  1. Sloan-Kettering Institute, United States
  2. Institut national de la santé et de la recherche médicale, Clermont Université, France

Abstract

How stem cells specified during development keep their non-differentiated quiescent state, and how they are reactivated, remain poorly understood. Here we applied a Drosophila model to follow in vivo behavior of Adult Muscle Precursors (AMPs), the transient fruit fly muscle stem cells. We report that emerging AMPs send out thin filopodia that make contact with neighboring muscles. AMPs keep their filopodia-based association with muscles throughout their dormant state but also when they start to proliferate, suggesting that muscles could play a role in AMP reactivation. Indeed, our genetic analyses indicate that muscles send inductive dIlp6 signals that switch the Insulin pathway ON in closely associated AMPs. This leads to the activation of Notch, which regulates AMP proliferation via dMyc. Altogether, we report that Drosophila AMPs display homing behavior to muscle niche and that the niche-driven Insulin-Notch-dMyc cascade plays a key role in setting the activated state of AMPs.

Article and author information

Author details

  1. Rajaguru Aradhya

    Rockefeller Research Laboratories, Sloan-Kettering Institute, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Monika Zmojdzian

    Génétique Reproduction et Développement, Institut national de la santé et de la recherche médicale, Clermont Université, Clermont-Ferrand, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Jean Philippe Da Ponte

    Génétique Reproduction et Développement, Institut national de la santé et de la recherche médicale, Clermont Université, Clermont-Ferrand, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Krzysztof Jagla

    Génétique Reproduction et Développement, Institut national de la santé et de la recherche médicale, Clermont Université, Clermont-Ferrand, France
    For correspondence
    christophe.jagla@udamail.fr
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Margaret Buckingham, Institut Pasteur, France

Version history

  1. Received: May 3, 2015
  2. Accepted: October 28, 2015
  3. Accepted Manuscript published: December 9, 2015 (version 1)
  4. Version of Record published: January 29, 2016 (version 2)

Copyright

© 2015, Aradhya et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,838
    views
  • 538
    downloads
  • 31
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rajaguru Aradhya
  2. Monika Zmojdzian
  3. Jean Philippe Da Ponte
  4. Krzysztof Jagla
(2015)
Muscle niche-driven Insulin-Notch-Myc cascade reactivates dormant Adult Muscle Precursors in Drosophila
eLife 4:e08497.
https://doi.org/10.7554/eLife.08497

Share this article

https://doi.org/10.7554/eLife.08497

Further reading

    1. Computational and Systems Biology
    2. Developmental Biology
    Gang Xue, Xiaoyi Zhang ... Zhiyuan Li
    Research Article

    Organisms utilize gene regulatory networks (GRN) to make fate decisions, but the regulatory mechanisms of transcription factors (TF) in GRNs are exceedingly intricate. A longstanding question in this field is how these tangled interactions synergistically contribute to decision-making procedures. To comprehensively understand the role of regulatory logic in cell fate decisions, we constructed a logic-incorporated GRN model and examined its behavior under two distinct driving forces (noise-driven and signal-driven). Under the noise-driven mode, we distilled the relationship among fate bias, regulatory logic, and noise profile. Under the signal-driven mode, we bridged regulatory logic and progression-accuracy trade-off, and uncovered distinctive trajectories of reprogramming influenced by logic motifs. In differentiation, we characterized a special logic-dependent priming stage by the solution landscape. Finally, we applied our findings to decipher three biological instances: hematopoiesis, embryogenesis, and trans-differentiation. Orthogonal to the classical analysis of expression profile, we harnessed noise patterns to construct the GRN corresponding to fate transition. Our work presents a generalizable framework for top-down fate-decision studies and a practical approach to the taxonomy of cell fate decisions.

    1. Developmental Biology
    2. Evolutionary Biology
    Zhuqing Wang, Yue Wang ... Wei Yan
    Research Article

    Despite rapid evolution across eutherian mammals, the X-linked MIR-506 family miRNAs are located in a region flanked by two highly conserved protein-coding genes (SLITRK2 and FMR1) on the X chromosome. Intriguingly, these miRNAs are predominantly expressed in the testis, suggesting a potential role in spermatogenesis and male fertility. Here, we report that the X-linked MIR-506 family miRNAs were derived from the MER91C DNA transposons. Selective inactivation of individual miRNAs or clusters caused no discernible defects, but simultaneous ablation of five clusters containing 19 members of the MIR-506 family led to reduced male fertility in mice. Despite normal sperm counts, motility, and morphology, the KO sperm were less competitive than wild-type sperm when subjected to a polyandrous mating scheme. Transcriptomic and bioinformatic analyses revealed that these X-linked MIR-506 family miRNAs, in addition to targeting a set of conserved genes, have more targets that are critical for spermatogenesis and embryonic development during evolution. Our data suggest that the MIR-506 family miRNAs function to enhance sperm competitiveness and reproductive fitness of the male by finetuning gene expression during spermatogenesis.