Developmental compartments in the larval trachea of Drosophila

  1. Prashanth R Rao
  2. Li Lin
  3. Hai Huang
  4. Arjun Guha
  5. Sougata Roy
  6. Thomas B Kornberg  Is a corresponding author
  1. University of California, San Francisco, United States
  2. PharmaLex GmbH, Germany
  3. Boston University, United States
  4. University of Maryland, College Park, United States

Abstract

The Drosophila tracheal system is a branched tubular network that forms in the embryo by a post-mitotic program of morphogenesis. In third instar larvae (L3), cells constituting the second tracheal metamere (Tr2) reenter the cell cycle. Clonal analysis of L3 Tr2 revealed that dividing cells in the dorsal trunk, dorsal branch and transverse connective branches respect lineage restriction boundaries near branch junctions. These boundaries corresponded to domains of gene expression, for example where cells expressing Spalt, Delta and Serrate in the dorsal trunk meet vein-expressing cells in the dorsal branch or transverse connective. Notch signaling was activated to one side of these borders and was required for the identity, specializations and segregation of border cells. These findings suggest that Tr2 is comprised of developmental compartments and that developmental compartments are an organizational feature relevant to branched tubular networks.

Article and author information

Author details

  1. Prashanth R Rao

    Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Li Lin

    PharmaLex GmbH, Mannheim, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Hai Huang

    Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Arjun Guha

    Pulmonary Center, Boston University School of Medicine, Boston University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Sougata Roy

    Department of Molecular and Cellular Biology, University of Maryland, College Park, College Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Thomas B Kornberg

    Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
    For correspondence
    tkornberg@ucsf.edu
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2015, Rao et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Prashanth R Rao
  2. Li Lin
  3. Hai Huang
  4. Arjun Guha
  5. Sougata Roy
  6. Thomas B Kornberg
(2015)
Developmental compartments in the larval trachea of Drosophila
eLife 4:e08666.
https://doi.org/10.7554/eLife.08666

Share this article

https://doi.org/10.7554/eLife.08666

Further reading

    1. Developmental Biology
    Yan-Xue Li, Xin-Le Kang ... Xiao-Fan Zhao
    Research Article

    Juvenile hormone (JH) is important to maintain insect larval status; however, its cell membrane receptor has not been identified. Using the lepidopteran insect Helicoverpa armigera (cotton bollworm), a serious agricultural pest, as a model, we determined that receptor tyrosine kinases (RTKs) cadherin 96ca (CAD96CA) and fibroblast growth factor receptor homologue (FGFR1) function as JH cell membrane receptors by their roles in JH-regulated gene expression, larval status maintaining, rapid intracellular calcium increase, phosphorylation of JH intracellular receptor MET1 and cofactor Taiman, and high affinity to JH III. Gene knockout of Cad96ca and Fgfr1 by CRISPR/Cas9 in embryo and knockdown in various insect cells, and overexpression of CAD96CA and FGFR1 in mammalian HEK-293T cells all supported CAD96CA and FGFR1 transmitting JH signal as JH cell membrane receptors.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Joseph A Bisson, Miriam Gordillo ... Todd Evans
    Research Article

    Haploinsufficiency for GATA6 is associated with congenital heart disease (CHD) with variable comorbidity of pancreatic or diaphragm defects, although the etiology of disease is not well understood. Here, we used cardiac directed differentiation from human embryonic stem cells (hESCs) as a platform to study GATA6 function during early cardiogenesis. GATA6 loss-of-function hESCs had a profound impairment in cardiac progenitor cell (CPC) specification and cardiomyocyte (CM) generation due to early defects during the mesendoderm and lateral mesoderm patterning stages. Profiling by RNA-seq and CUT&RUN identified genes of the WNT and BMP programs regulated by GATA6 during early mesoderm patterning. Furthermore, interactome analysis detected GATA6 binding with developmental transcription factors and chromatin remodelers, suggesting cooperative regulation of cardiac lineage gene accessibility. We show that modulating WNT and BMP inputs during the first 48 hr of cardiac differentiation is sufficient to partially rescue CPC and CM defects in GATA6 heterozygous and homozygous mutant hESCs. This study provides evidence of the regulatory functions for GATA6 directing human precardiac mesoderm patterning during the earliest stages of cardiogenesis to further our understanding of haploinsufficiency causing CHD and the co-occurrence of cardiac and other organ defects caused by human GATA6 mutations.