A pain-mediated neural signal induces relapse in murine autoimmune encephalomyelitis, a multiple sclerosis model

  1. Yasunobu Arima
  2. Daisuke Kamimura
  3. Toru Atsumi
  4. Masaya Harada
  5. Tadafumi Kawamoto
  6. Naoki Nishikawa
  7. Andrea Stofkova
  8. Takuto Ohki
  9. Kotaro Higuchi
  10. Yuji Morimoto
  11. Peter Wieghofer
  12. Yuka Okada
  13. Yuki Mori
  14. Saburo Sakoda
  15. Shizuya Saika
  16. Yoshichika Yoshioka
  17. Issei Komuro
  18. Toshihide Yamashita
  19. Toshio Hirano
  20. Marco Prinz
  21. Masaaki Murakami  Is a corresponding author
  1. Hokkaido University, Japan
  2. Tsurumi University, Japan
  3. University of Freiburg, Germany
  4. Wakayama Medical University, Japan
  5. Osaka University, Japan
  6. National Hospital Organization Toneyama Hospital, Japan
  7. University of Tokyo, Japan

Abstract

Although pain is a common symptom of various diseases and disorders, its contribution to disease pathogenesis is not well understood. Here we show using murine experimental autoimmune encephalomyelitis (EAE), a model for multiple sclerosis (MS), that pain induces EAE relapse. Mechanistic analysis showed that pain induction activates a sensory-sympathetic signal followed by a chemokine-mediated accumulation of MHC class II+CD11b+ cells that showed antigen-presentation activity at specific ventral vessels in the fifth lumbar cord of EAE-recovered mice. Following this accumulation, various immune cells including pathogenic CD4+ T cells recruited in the spinal cord in a manner dependent on a local chemokine inducer in endothelial cells, resulting in EAE relapse. Our results demonstrate that a pain-mediated neural signal can be transformed into an inflammation reaction at specific vessels to induce disease relapse, thus making this signal a potential therapeutic target.

Article and author information

Author details

  1. Yasunobu Arima

    Division of Molecular Neuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  2. Daisuke Kamimura

    Division of Molecular Neuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Toru Atsumi

    Division of Molecular Neuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Masaya Harada

    Division of Molecular Neuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Tadafumi Kawamoto

    Department of Dentistry, Tsurumi University, Yokohama, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Naoki Nishikawa

    Division of Molecular Neuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Andrea Stofkova

    Division of Molecular Neuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  8. Takuto Ohki

    Division of Molecular Neuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  9. Kotaro Higuchi

    Division of Molecular Neuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  10. Yuji Morimoto

    Department of Anesthesiology and Critical Care Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  11. Peter Wieghofer

    Institute of Neuropathology, Faculty of Biology, University of Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  12. Yuka Okada

    Department of Ophthalmology, Wakayama Medical University, Wakayama, Japan
    Competing interests
    The authors declare that no competing interests exist.
  13. Yuki Mori

    Laboratory of Biofunctional Imaging, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
    Competing interests
    The authors declare that no competing interests exist.
  14. Saburo Sakoda

    Department of Neurology, National Hospital Organization Toneyama Hospital, Osaka, Japan
    Competing interests
    The authors declare that no competing interests exist.
  15. Shizuya Saika

    Department of Ophthalmology, Wakayama Medical University, Wakayama, Japan
    Competing interests
    The authors declare that no competing interests exist.
  16. Yoshichika Yoshioka

    Laboratory of Biofunctional Imaging, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
    Competing interests
    The authors declare that no competing interests exist.
  17. Issei Komuro

    Department of Cardiovascular Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  18. Toshihide Yamashita

    Laboratory of Molecular Neuroscience, Graduate School of Medicine, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
    Competing interests
    The authors declare that no competing interests exist.
  19. Toshio Hirano

    Osaka University, Osaka, Japan
    Competing interests
    The authors declare that no competing interests exist.
  20. Marco Prinz

    BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  21. Masaaki Murakami

    Division of Molecular Neuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
    For correspondence
    murakami@igm.hokudai.ac.jp
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All animal experiments were performed following the guidelines of the Institutional Animal Care and Use Committees of the Institute for Genetic Medicine, the Graduate School of Medicine, Hokkaido University and the Graduate School of Frontier Bioscience and Graduate School of Medicine, Osaka University with protocol numbers 2014-0083 and 2014-0026.

Copyright

© 2015, Arima et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,837
    views
  • 994
    downloads
  • 56
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yasunobu Arima
  2. Daisuke Kamimura
  3. Toru Atsumi
  4. Masaya Harada
  5. Tadafumi Kawamoto
  6. Naoki Nishikawa
  7. Andrea Stofkova
  8. Takuto Ohki
  9. Kotaro Higuchi
  10. Yuji Morimoto
  11. Peter Wieghofer
  12. Yuka Okada
  13. Yuki Mori
  14. Saburo Sakoda
  15. Shizuya Saika
  16. Yoshichika Yoshioka
  17. Issei Komuro
  18. Toshihide Yamashita
  19. Toshio Hirano
  20. Marco Prinz
  21. Masaaki Murakami
(2015)
A pain-mediated neural signal induces relapse in murine autoimmune encephalomyelitis, a multiple sclerosis model
eLife 4:e08733.
https://doi.org/10.7554/eLife.08733

Share this article

https://doi.org/10.7554/eLife.08733

Further reading

    1. Cell Biology
    2. Immunology and Inflammation
    Armando Montoya-Garcia, Idaira M Guerrero-Fonseca ... Michael Schnoor
    Research Article

    Arpin was discovered as an inhibitor of the Arp2/3 complex localized at the lamellipodial tip of fibroblasts, where it regulated migration steering. Recently, we showed that arpin stabilizes the epithelial barrier in an Arp2/3-dependent manner. However, the expression and functions of arpin in endothelial cells (EC) have not yet been described. Arpin mRNA and protein are expressed in EC and downregulated by pro-inflammatory cytokines. Arpin depletion in Human Umbilical Vein Endothelial Cells causes the formation of actomyosin stress fibers leading to increased permeability in an Arp2/3-independent manner. Instead, inhibitors of ROCK1 and ZIPK, kinases involved in the generation of stress fibers, normalize the loss-of-arpin effects on actin filaments and permeability. Arpin-deficient mice are viable but show a characteristic vascular phenotype in the lung including edema, microhemorrhage, and vascular congestion, increased F-actin levels, and vascular permeability. Our data show that, apart from being an Arp2/3 inhibitor, arpin is also a regulator of actomyosin contractility and endothelial barrier integrity.

    1. Immunology and Inflammation
    Alexandra a Aybar-Torres, Lennon A Saldarriaga ... Lei Jin
    Research Article

    The significance of STING1 gene in tissue inflammation and cancer immunotherapy has been increasingly recognized. Intriguingly, common human STING1 alleles R71H-G230A-R293Q (HAQ) and G230A-R293Q (AQ) are carried by ~60% of East Asians and ~40% of Africans, respectively. Here, we examine the modulatory effects of HAQ, AQ alleles on STING-associated vasculopathy with onset in infancy (SAVI), an autosomal dominant, fatal inflammatory disease caused by gain-of-function human STING1 mutations. CD4 T cellpenia is evident in SAVI patients and mouse models. Using Sting1 knock-in mice expressing common human STING1 alleles HAQ, AQ, and Q293, we found that HAQ, AQ, and Q293 splenocytes resist STING1-mediated cell death ex vivo, establishing a critical role of STING1 residue 293 in cell death. The HAQ/SAVI(N153S) and AQ/SAVI(N153S) mice did not have CD4 T cellpenia. The HAQ/SAVI(N153S), AQ/SAVI(N153S) mice have more (~10-fold, ~20-fold, respectively) T-regs than WT/SAVI(N153S) mice. Remarkably, while they have comparable TBK1, IRF3, and NFκB activation as the WT/SAVI, the AQ/SAVI mice have no tissue inflammation, regular body weight, and normal lifespan. We propose that STING1 activation promotes tissue inflammation by depleting T-regs cells in vivo. Billions of modern humans have the dominant HAQ, AQ alleles. STING1 research and STING1-targeting immunotherapy should consider STING1 heterogeneity in humans.