A pain-mediated neural signal induces relapse in murine autoimmune encephalomyelitis, a multiple sclerosis model

  1. Yasunobu Arima
  2. Daisuke Kamimura
  3. Toru Atsumi
  4. Masaya Harada
  5. Tadafumi Kawamoto
  6. Naoki Nishikawa
  7. Andrea Stofkova
  8. Takuto Ohki
  9. Kotaro Higuchi
  10. Yuji Morimoto
  11. Peter Wieghofer
  12. Yuka Okada
  13. Yuki Mori
  14. Saburo Sakoda
  15. Shizuya Saika
  16. Yoshichika Yoshioka
  17. Issei Komuro
  18. Toshihide Yamashita
  19. Toshio Hirano
  20. Marco Prinz
  21. Masaaki Murakami  Is a corresponding author
  1. Hokkaido University, Japan
  2. Tsurumi University, Japan
  3. University of Freiburg, Germany
  4. Wakayama Medical University, Japan
  5. Osaka University, Japan
  6. National Hospital Organization Toneyama Hospital, Japan
  7. University of Tokyo, Japan

Abstract

Although pain is a common symptom of various diseases and disorders, its contribution to disease pathogenesis is not well understood. Here we show using murine experimental autoimmune encephalomyelitis (EAE), a model for multiple sclerosis (MS), that pain induces EAE relapse. Mechanistic analysis showed that pain induction activates a sensory-sympathetic signal followed by a chemokine-mediated accumulation of MHC class II+CD11b+ cells that showed antigen-presentation activity at specific ventral vessels in the fifth lumbar cord of EAE-recovered mice. Following this accumulation, various immune cells including pathogenic CD4+ T cells recruited in the spinal cord in a manner dependent on a local chemokine inducer in endothelial cells, resulting in EAE relapse. Our results demonstrate that a pain-mediated neural signal can be transformed into an inflammation reaction at specific vessels to induce disease relapse, thus making this signal a potential therapeutic target.

Article and author information

Author details

  1. Yasunobu Arima

    Division of Molecular Neuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  2. Daisuke Kamimura

    Division of Molecular Neuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Toru Atsumi

    Division of Molecular Neuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Masaya Harada

    Division of Molecular Neuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Tadafumi Kawamoto

    Department of Dentistry, Tsurumi University, Yokohama, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Naoki Nishikawa

    Division of Molecular Neuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Andrea Stofkova

    Division of Molecular Neuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  8. Takuto Ohki

    Division of Molecular Neuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  9. Kotaro Higuchi

    Division of Molecular Neuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  10. Yuji Morimoto

    Department of Anesthesiology and Critical Care Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  11. Peter Wieghofer

    Institute of Neuropathology, Faculty of Biology, University of Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  12. Yuka Okada

    Department of Ophthalmology, Wakayama Medical University, Wakayama, Japan
    Competing interests
    The authors declare that no competing interests exist.
  13. Yuki Mori

    Laboratory of Biofunctional Imaging, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
    Competing interests
    The authors declare that no competing interests exist.
  14. Saburo Sakoda

    Department of Neurology, National Hospital Organization Toneyama Hospital, Osaka, Japan
    Competing interests
    The authors declare that no competing interests exist.
  15. Shizuya Saika

    Department of Ophthalmology, Wakayama Medical University, Wakayama, Japan
    Competing interests
    The authors declare that no competing interests exist.
  16. Yoshichika Yoshioka

    Laboratory of Biofunctional Imaging, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
    Competing interests
    The authors declare that no competing interests exist.
  17. Issei Komuro

    Department of Cardiovascular Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  18. Toshihide Yamashita

    Laboratory of Molecular Neuroscience, Graduate School of Medicine, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
    Competing interests
    The authors declare that no competing interests exist.
  19. Toshio Hirano

    Osaka University, Osaka, Japan
    Competing interests
    The authors declare that no competing interests exist.
  20. Marco Prinz

    BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  21. Masaaki Murakami

    Division of Molecular Neuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
    For correspondence
    murakami@igm.hokudai.ac.jp
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All animal experiments were performed following the guidelines of the Institutional Animal Care and Use Committees of the Institute for Genetic Medicine, the Graduate School of Medicine, Hokkaido University and the Graduate School of Frontier Bioscience and Graduate School of Medicine, Osaka University with protocol numbers 2014-0083 and 2014-0026.

Copyright

© 2015, Arima et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,881
    views
  • 1,000
    downloads
  • 56
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yasunobu Arima
  2. Daisuke Kamimura
  3. Toru Atsumi
  4. Masaya Harada
  5. Tadafumi Kawamoto
  6. Naoki Nishikawa
  7. Andrea Stofkova
  8. Takuto Ohki
  9. Kotaro Higuchi
  10. Yuji Morimoto
  11. Peter Wieghofer
  12. Yuka Okada
  13. Yuki Mori
  14. Saburo Sakoda
  15. Shizuya Saika
  16. Yoshichika Yoshioka
  17. Issei Komuro
  18. Toshihide Yamashita
  19. Toshio Hirano
  20. Marco Prinz
  21. Masaaki Murakami
(2015)
A pain-mediated neural signal induces relapse in murine autoimmune encephalomyelitis, a multiple sclerosis model
eLife 4:e08733.
https://doi.org/10.7554/eLife.08733

Share this article

https://doi.org/10.7554/eLife.08733

Further reading

    1. Immunology and Inflammation
    Zhiyan Wang, Nore Ojogun ... Mingfang Lu
    Research Article

    The incidence of metabolic dysfunction-associated steatotic liver disease (MASLD) has been increasing worldwide. Since gut-derived bacterial lipopolysaccharides (LPS) can travel via the portal vein to the liver and play an important role in producing hepatic pathology, it seemed possible that (1) LPS stimulates hepatic cells to accumulate lipid, and (2) inactivating LPS can be preventive. Acyloxyacyl hydrolase (AOAH), the eukaryotic lipase that inactivates LPS and oxidized phospholipids, is produced in the intestine, liver, and other organs. We fed mice either normal chow or a high-fat diet for 28 weeks and found that Aoah-/- mice accumulated more hepatic lipid than did Aoah+/+ mice. In young mice, before increased hepatic fat accumulation was observed, Aoah-/- mouse livers increased their abundance of sterol regulatory element-binding protein 1, and the expression of its target genes that promote fatty acid synthesis. Aoah-/- mice also increased hepatic expression of Cd36 and Fabp3, which mediate fatty acid uptake, and decreased expression of fatty acid-oxidation-related genes Acot2 and Ppara. Our results provide evidence that increasing AOAH abundance in the gut, bloodstream, and/or liver may be an effective strategy for preventing or treating MASLD.

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Malika Hale, Kennidy K Takehara ... Marion Pepper
    Research Article

    Pseudomonas aeruginosa (PA) is an opportunistic, frequently multidrug-resistant pathogen that can cause severe infections in hospitalized patients. Antibodies against the PA virulence factor, PcrV, protect from death and disease in a variety of animal models. However, clinical trials of PcrV-binding antibody-based products have thus far failed to demonstrate benefit. Prior candidates were derivations of antibodies identified using protein-immunized animal systems and required extensive engineering to optimize binding and/or reduce immunogenicity. Of note, PA infections are common in people with cystic fibrosis (pwCF), who are generally believed to mount normal adaptive immune responses. Here, we utilized a tetramer reagent to detect and isolate PcrV-specific B cells in pwCF and, via single-cell sorting and paired-chain sequencing, identified the B cell receptor (BCR) variable region sequences that confer PcrV-specificity. We derived multiple high affinity anti-PcrV monoclonal antibodies (mAbs) from PcrV-specific B cells across three donors, including mAbs that exhibit potent anti-PA activity in a murine pneumonia model. This robust strategy for mAb discovery expands what is known about PA-specific B cells in pwCF and yields novel mAbs with potential for future clinical use.