A pain-mediated neural signal induces relapse in murine autoimmune encephalomyelitis, a multiple sclerosis model

  1. Yasunobu Arima
  2. Daisuke Kamimura
  3. Toru Atsumi
  4. Masaya Harada
  5. Tadafumi Kawamoto
  6. Naoki Nishikawa
  7. Andrea Stofkova
  8. Takuto Ohki
  9. Kotaro Higuchi
  10. Yuji Morimoto
  11. Peter Wieghofer
  12. Yuka Okada
  13. Yuki Mori
  14. Saburo Sakoda
  15. Shizuya Saika
  16. Yoshichika Yoshioka
  17. Issei Komuro
  18. Toshihide Yamashita
  19. Toshio Hirano
  20. Marco Prinz
  21. Masaaki Murakami  Is a corresponding author
  1. Hokkaido University, Japan
  2. Tsurumi University, Japan
  3. University of Freiburg, Germany
  4. Wakayama Medical University, Japan
  5. Osaka University, Japan
  6. National Hospital Organization Toneyama Hospital, Japan
  7. University of Tokyo, Japan

Abstract

Although pain is a common symptom of various diseases and disorders, its contribution to disease pathogenesis is not well understood. Here we show using murine experimental autoimmune encephalomyelitis (EAE), a model for multiple sclerosis (MS), that pain induces EAE relapse. Mechanistic analysis showed that pain induction activates a sensory-sympathetic signal followed by a chemokine-mediated accumulation of MHC class II+CD11b+ cells that showed antigen-presentation activity at specific ventral vessels in the fifth lumbar cord of EAE-recovered mice. Following this accumulation, various immune cells including pathogenic CD4+ T cells recruited in the spinal cord in a manner dependent on a local chemokine inducer in endothelial cells, resulting in EAE relapse. Our results demonstrate that a pain-mediated neural signal can be transformed into an inflammation reaction at specific vessels to induce disease relapse, thus making this signal a potential therapeutic target.

Article and author information

Author details

  1. Yasunobu Arima

    Division of Molecular Neuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  2. Daisuke Kamimura

    Division of Molecular Neuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Toru Atsumi

    Division of Molecular Neuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Masaya Harada

    Division of Molecular Neuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Tadafumi Kawamoto

    Department of Dentistry, Tsurumi University, Yokohama, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Naoki Nishikawa

    Division of Molecular Neuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Andrea Stofkova

    Division of Molecular Neuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  8. Takuto Ohki

    Division of Molecular Neuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  9. Kotaro Higuchi

    Division of Molecular Neuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  10. Yuji Morimoto

    Department of Anesthesiology and Critical Care Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  11. Peter Wieghofer

    Institute of Neuropathology, Faculty of Biology, University of Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  12. Yuka Okada

    Department of Ophthalmology, Wakayama Medical University, Wakayama, Japan
    Competing interests
    The authors declare that no competing interests exist.
  13. Yuki Mori

    Laboratory of Biofunctional Imaging, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
    Competing interests
    The authors declare that no competing interests exist.
  14. Saburo Sakoda

    Department of Neurology, National Hospital Organization Toneyama Hospital, Osaka, Japan
    Competing interests
    The authors declare that no competing interests exist.
  15. Shizuya Saika

    Department of Ophthalmology, Wakayama Medical University, Wakayama, Japan
    Competing interests
    The authors declare that no competing interests exist.
  16. Yoshichika Yoshioka

    Laboratory of Biofunctional Imaging, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
    Competing interests
    The authors declare that no competing interests exist.
  17. Issei Komuro

    Department of Cardiovascular Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  18. Toshihide Yamashita

    Laboratory of Molecular Neuroscience, Graduate School of Medicine, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
    Competing interests
    The authors declare that no competing interests exist.
  19. Toshio Hirano

    Osaka University, Osaka, Japan
    Competing interests
    The authors declare that no competing interests exist.
  20. Marco Prinz

    BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  21. Masaaki Murakami

    Division of Molecular Neuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
    For correspondence
    murakami@igm.hokudai.ac.jp
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All animal experiments were performed following the guidelines of the Institutional Animal Care and Use Committees of the Institute for Genetic Medicine, the Graduate School of Medicine, Hokkaido University and the Graduate School of Frontier Bioscience and Graduate School of Medicine, Osaka University with protocol numbers 2014-0083 and 2014-0026.

Copyright

© 2015, Arima et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,850
    views
  • 998
    downloads
  • 56
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yasunobu Arima
  2. Daisuke Kamimura
  3. Toru Atsumi
  4. Masaya Harada
  5. Tadafumi Kawamoto
  6. Naoki Nishikawa
  7. Andrea Stofkova
  8. Takuto Ohki
  9. Kotaro Higuchi
  10. Yuji Morimoto
  11. Peter Wieghofer
  12. Yuka Okada
  13. Yuki Mori
  14. Saburo Sakoda
  15. Shizuya Saika
  16. Yoshichika Yoshioka
  17. Issei Komuro
  18. Toshihide Yamashita
  19. Toshio Hirano
  20. Marco Prinz
  21. Masaaki Murakami
(2015)
A pain-mediated neural signal induces relapse in murine autoimmune encephalomyelitis, a multiple sclerosis model
eLife 4:e08733.
https://doi.org/10.7554/eLife.08733

Share this article

https://doi.org/10.7554/eLife.08733

Further reading

    1. Immunology and Inflammation
    Matteo Napoli, Roland Immler ... Monika Pruenster
    Research Article

    S100A8/A9 is an endogenous alarmin secreted by myeloid cells during many acute and chronic inflammatory disorders. Despite increasing evidence of the proinflammatory effects of extracellular S100A8/A9, little is known about its intracellular function. Here, we show that cytosolic S100A8/A9 is indispensable for neutrophil post-arrest modifications during outside-in signaling under flow conditions in vitro and neutrophil recruitment in vivo, independent of its extracellular functions. Mechanistically, genetic deletion of S100A9 in mice caused dysregulated Ca2+ signatures in activated neutrophils resulting in reduced Ca2+ availability at the formed LFA-1/F-actin clusters with defective β2 integrin outside-in signaling during post-arrest modifications. Consequently, we observed impaired cytoskeletal rearrangement, cell polarization, and spreading, as well as cell protrusion formation in S100a9-/- compared to wildtype (WT) neutrophils, making S100a9-/- cells more susceptible to detach under flow, thereby preventing efficient neutrophil recruitment and extravasation into inflamed tissue.

    1. Computational and Systems Biology
    2. Immunology and Inflammation
    Lucia Csepregi, Kenneth Hoehn ... Sai T Reddy
    Research Article

    Diverse antibody repertoires spanning multiple lymphoid organs (i.e., bone marrow, spleen, lymph nodes) form the foundation of protective humoral immunity. Changes in their composition across lymphoid organs are a consequence of B-cell selection and migration events leading to a highly dynamic and unique physiological landscape of antibody repertoires upon antigenic challenge (e.g., vaccination). However, to what extent B cells encoding identical or similar antibody sequences (clones) are distributed across multiple lymphoid organs and how this is shaped by the strength of a humoral response remains largely unexplored. Here, we performed an in-depth systems analysis of antibody repertoires across multiple distinct lymphoid organs of immunized mice and discovered that organ-specific antibody repertoire features (i.e., germline V-gene usage and clonal expansion profiles) equilibrated upon a strong humoral response (multiple immunizations and high serum titers). This resulted in a surprisingly high degree of repertoire consolidation, characterized by highly connected and overlapping B-cell clones across multiple lymphoid organs. Finally, we revealed distinct physiological axes indicating clonal migrations and showed that antibody repertoire consolidation directly correlated with antigen specificity. Our study uncovered how a strong humoral response resulted in a more uniform but redundant physiological landscape of antibody repertoires, indicating that increases in antibody serum titers were a result of synergistic contributions from antigen-specific B-cell clones distributed across multiple lymphoid organs. Our findings provide valuable insights for the assessment and design of vaccine strategies.