Differential inhibition onto developing and mature granule cells generates high-frequency filters with variable gain

  1. María Belén Pardi
  2. Mora Belén Ogando
  3. Alejandro F Schinder
  4. Antonia Marin-Burgin  Is a corresponding author
  1. Instituto de Investigación en Biomedicina de Buenos Aires - CONICET - Partner Institute of the Max Planck Society, Argentina
  2. Leloir Institute -CONICET, Argentina

Abstract

Adult hippocampal neurogenesis provides the dentate gyrus with heterogeneous populations of granule cells (GC) originated at different times. The contribution of these cells to information encoding is under current investigation. Here we show that incoming spike trains activate different populations of GC determined by the stimulation frequency and GC age. Immature GC respond to a wider range of stimulus frequencies, whereas mature GC are less responsive at high frequencies. This difference is dictated by feed forward inhibition, which restricts mature GC activation. Yet, the stronger inhibition of mature GC results in a higher temporal fidelity compared to that of immature GC. Thus, hippocampal inputs activate two populations of neurons with variable frequency filters: immature cells, with wide‐range responses, that are reliable transmitters of the incoming frequency, and mature neurons, with narrow frequency response, that are precise at informing the beginning of the stimulus, but with a sparse activity.

Article and author information

Author details

  1. María Belén Pardi

    Instituto de Investigación en Biomedicina de Buenos Aires - CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
    Competing interests
    The authors declare that no competing interests exist.
  2. Mora Belén Ogando

    Instituto de Investigación en Biomedicina de Buenos Aires - CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
    Competing interests
    The authors declare that no competing interests exist.
  3. Alejandro F Schinder

    Laboratory of Neuronal Plasticity, Leloir Institute -CONICET, Buenos Aires, Argentina
    Competing interests
    The authors declare that no competing interests exist.
  4. Antonia Marin-Burgin

    Instituto de Investigación en Biomedicina de Buenos Aires - CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
    For correspondence
    aburgin@ibioba-mpsp-conicet.gov.ar
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Marlene Bartos, Albert-Ludwigs-Universität Freiburg, Germany

Ethics

Animal experimentation: Experimental protocols were approved by the Institutional Animal Care and Use Committee of the Fundación Instituto Leloir (Protocols Number 2009 08 37 and 64/2015, IACUC, Leloir Institute Foundation) according to the Principles for Biomedical Research involving animals of the Council for International Organizations for Medical Sciences and provisions stated in the Guide for the Care and Use of Laboratory Animals.

Version history

  1. Received: May 16, 2015
  2. Accepted: July 10, 2015
  3. Accepted Manuscript published: July 11, 2015 (version 1)
  4. Version of Record published: July 31, 2015 (version 2)

Copyright

© 2015, Pardi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,549
    views
  • 384
    downloads
  • 27
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. María Belén Pardi
  2. Mora Belén Ogando
  3. Alejandro F Schinder
  4. Antonia Marin-Burgin
(2015)
Differential inhibition onto developing and mature granule cells generates high-frequency filters with variable gain
eLife 4:e08764.
https://doi.org/10.7554/eLife.08764

Share this article

https://doi.org/10.7554/eLife.08764

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Kenneth Chiou, Noah Snyder-Mackler
    Insight

    Single-cell RNA sequencing reveals the extent to which marmosets carry genetically distinct cells from their siblings.

    1. Neuroscience
    Flavio J Schmidig, Simon Ruch, Katharina Henke
    Research Article

    We are unresponsive during slow-wave sleep but continue monitoring external events for survival. Our brain wakens us when danger is imminent. If events are non-threatening, our brain might store them for later consideration to improve decision-making. To test this hypothesis, we examined whether novel vocabulary consisting of simultaneously played pseudowords and translation words are encoded/stored during sleep, and which neural-electrical events facilitate encoding/storage. An algorithm for brain-state-dependent stimulation selectively targeted word pairs to slow-wave peaks or troughs. Retrieval tests were given 12 and 36 hr later. These tests required decisions regarding the semantic category of previously sleep-played pseudowords. The sleep-played vocabulary influenced awake decision-making 36 hr later, if targeted to troughs. The words’ linguistic processing raised neural complexity. The words’ semantic-associative encoding was supported by increased theta power during the ensuing peak. Fast-spindle power ramped up during a second peak likely aiding consolidation. Hence, new vocabulary played during slow-wave sleep was stored and influenced decision-making days later.