Maternally provided LSD1/KDM1A enables the maternal-to-zygotic transition and prevents defects that manifest postnatally

  1. Jadiel A Wasson
  2. Ashley K Simon
  3. Dexter A Myrick
  4. Gernot Wolf
  5. Shawn Driscoll
  6. Samuel L Pfaff
  7. Todd S Macfarlan
  8. David J Katz  Is a corresponding author
  1. Emory University School of Medicine, United States
  2. National Institutes of health, United States
  3. Howard Hughes Medical Institute, The Salk Institute for Biological Studies, United States

Abstract

Somatic cell nuclear transfer has established that the oocyte contains maternal factors with epigenetic reprogramming capacity. Yet the identity and function of these maternal factors during the gamete to embryo transition remains poorly understood. In C. elegans, LSD1/KDM1A enables this transition by removing H3K4me2 and preventing the transgenerational inheritance of transcription patterns. Here we show that loss of maternal LSD1/KDM1A in mice results in embryonic arrest at the 1-2 cell stage, with arrested embryos failing to undergo the maternal-to-zygotic transition. This suggests that LSD1/KDM1A maternal reprogramming is conserved. Moreover, partial loss of maternal LSD1/KDM1A results in striking phenotypes weeks after fertilization; including perinatal lethality and abnormal behavior in surviving adults. These maternal effect hypomorphic phenotypes are associated with alterations in DNA methylation and expression at imprinted genes. These results establish a novel mammalian paradigm where defects in early epigenetic reprogramming can lead to defects that manifest later in development.

Article and author information

Author details

  1. Jadiel A Wasson

    Department of Cell Biology, Emory University School of Medicine, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Ashley K Simon

    Department of Human Genetics, Emory University School of Medicine, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Dexter A Myrick

    Department of Cell Biology, Emory University School of Medicine, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Gernot Wolf

    The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Shawn Driscoll

    Gene Expression Laboratory, Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Samuel L Pfaff

    Gene Expression Laboratory, Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Todd S Macfarlan

    The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. David J Katz

    Department of Cell Biology, Emory University School of Medicine, Atlanta, United States
    For correspondence
    djkatz@emory.edu
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All mouse work was performed under the approved guidelines of the Emory University IACUC (protocol #2002534).

Reviewing Editor

  1. Anne C Ferguson-Smith, University of Cambridge, United Kingdom

Publication history

  1. Received: May 21, 2015
  2. Accepted: January 25, 2016
  3. Accepted Manuscript published: January 27, 2016 (version 1)
  4. Version of Record published: April 5, 2016 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,407
    Page views
  • 805
    Downloads
  • 56
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jadiel A Wasson
  2. Ashley K Simon
  3. Dexter A Myrick
  4. Gernot Wolf
  5. Shawn Driscoll
  6. Samuel L Pfaff
  7. Todd S Macfarlan
  8. David J Katz
(2016)
Maternally provided LSD1/KDM1A enables the maternal-to-zygotic transition and prevents defects that manifest postnatally
eLife 5:e08848.
https://doi.org/10.7554/eLife.08848

Further reading

    1. Developmental Biology
    2. Evolutionary Biology
    James W Truman, Jacquelyn Price ... Tzumin Lee
    Research Article

    We have focused on the mushroom bodies (MB) of Drosophila to determine how the larval circuits are formed and then transformed into those of the adult at metamorphosis. The adult MB has a core of thousands of Kenyon neurons; axons of the early-born g class form a medial lobe and those from later-born a'b' and ab classes form both medial and vertical lobes. The larva, however, hatches with only g neurons and forms a vertical lobe 'facsimile' using larval-specific axon branches from its g neurons. Computations by the MB involves MB input (MBINs) and output (MBONs) neurons that divide the lobes into discrete compartments. The larva has 10 such compartments while the adult MB has 16. We determined the fates of 28 of the 32 types of MBONs and MBINs that define the 10 larval compartments. Seven larval compartments are eventually incorporated into the adult MB; four of their larval MBINs die, while 12 MBINs/MBONs continue into the adult MB although with some compartment shifting. The remaining three larval compartments are larval specific, and their MBIN/MBONs trans-differentiate at metamorphosis, leaving the MB and joining other adult brain circuits. With the loss of the larval vertical lobe facsimile, the adult vertical lobes, are made de novo at metamorphosis, and their MBONs/MBINs are recruited from the pool of adult-specific cells. The combination of cell death, compartment shifting, trans-differentiation, and recruitment of new neurons result in no larval MBIN-MBON connections persisting through metamorphosis. At this simple level, then, we find no anatomical substrate for a memory trace persisting from larva to adult. For the neurons that trans-differentiate, our data suggest that their adult phenotypes are in line with their evolutionarily ancestral roles while their larval phenotypes are derived adaptations for the larval stage. These cells arise primarily within lineages that also produce permanent MBINs and MBONs, suggesting that larval specifying factors may allow information related to birth-order or sibling identity to be interpreted in a modified manner in these neurons to cause them to adopt a modified, larval phenotype. The loss of such factors at metamorphosis, though, would then allow these cells to adopt their ancestral phenotype in the adult system.

    1. Developmental Biology
    Marianne E Emmert, Parul Aggarwal ... Roger Cornwall
    Research Article Updated

    Neonatal brachial plexus injury (NBPI) causes disabling and incurable muscle contractures that result from impaired longitudinal growth of denervated muscles. This deficit in muscle growth is driven by increased proteasome-mediated protein degradation, suggesting a dysregulation of muscle proteostasis. The myostatin (MSTN) pathway, a prominent muscle-specific regulator of proteostasis, is a putative signaling mechanism by which neonatal denervation could impair longitudinal muscle growth, and thus a potential target to prevent NBPI-induced contractures. Through a mouse model of NBPI, our present study revealed that pharmacologic inhibition of MSTN signaling induces hypertrophy, restores longitudinal growth, and prevents contractures in denervated muscles of female but not male mice, despite inducing hypertrophy of normally innervated muscles in both sexes. Additionally, the MSTN-dependent impairment of longitudinal muscle growth after NBPI in female mice is associated with perturbation of 20S proteasome activity, but not through alterations in canonical MSTN signaling pathways. These findings reveal a sex dimorphism in the regulation of neonatal longitudinal muscle growth and contractures, thereby providing insights into contracture pathophysiology, identifying a potential muscle-specific therapeutic target for contracture prevention, and underscoring the importance of sex as a biological variable in the pathophysiology of neuromuscular disorders.