Maternally provided LSD1/KDM1A enables the maternal-to-zygotic transition and prevents defects that manifest postnatally

  1. Jadiel A Wasson
  2. Ashley K Simon
  3. Dexter A Myrick
  4. Gernot Wolf
  5. Shawn Driscoll
  6. Samuel L Pfaff
  7. Todd S Macfarlan
  8. David J Katz  Is a corresponding author
  1. Emory University School of Medicine, United States
  2. National Institutes of health, United States
  3. Howard Hughes Medical Institute, The Salk Institute for Biological Studies, United States

Abstract

Somatic cell nuclear transfer has established that the oocyte contains maternal factors with epigenetic reprogramming capacity. Yet the identity and function of these maternal factors during the gamete to embryo transition remains poorly understood. In C. elegans, LSD1/KDM1A enables this transition by removing H3K4me2 and preventing the transgenerational inheritance of transcription patterns. Here we show that loss of maternal LSD1/KDM1A in mice results in embryonic arrest at the 1-2 cell stage, with arrested embryos failing to undergo the maternal-to-zygotic transition. This suggests that LSD1/KDM1A maternal reprogramming is conserved. Moreover, partial loss of maternal LSD1/KDM1A results in striking phenotypes weeks after fertilization; including perinatal lethality and abnormal behavior in surviving adults. These maternal effect hypomorphic phenotypes are associated with alterations in DNA methylation and expression at imprinted genes. These results establish a novel mammalian paradigm where defects in early epigenetic reprogramming can lead to defects that manifest later in development.

Article and author information

Author details

  1. Jadiel A Wasson

    Department of Cell Biology, Emory University School of Medicine, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Ashley K Simon

    Department of Human Genetics, Emory University School of Medicine, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Dexter A Myrick

    Department of Cell Biology, Emory University School of Medicine, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Gernot Wolf

    The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Shawn Driscoll

    Gene Expression Laboratory, Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Samuel L Pfaff

    Gene Expression Laboratory, Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Todd S Macfarlan

    The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. David J Katz

    Department of Cell Biology, Emory University School of Medicine, Atlanta, United States
    For correspondence
    djkatz@emory.edu
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All mouse work was performed under the approved guidelines of the Emory University IACUC (protocol #2002534).

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,551
    views
  • 832
    downloads
  • 70
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jadiel A Wasson
  2. Ashley K Simon
  3. Dexter A Myrick
  4. Gernot Wolf
  5. Shawn Driscoll
  6. Samuel L Pfaff
  7. Todd S Macfarlan
  8. David J Katz
(2016)
Maternally provided LSD1/KDM1A enables the maternal-to-zygotic transition and prevents defects that manifest postnatally
eLife 5:e08848.
https://doi.org/10.7554/eLife.08848

Share this article

https://doi.org/10.7554/eLife.08848

Further reading

    1. Developmental Biology
    Natsuko Emura, Florence DM Wavreil ... Mamiko Yajima
    Research Article

    The evolutionary introduction of asymmetric cell division (ACD) into the developmental program facilitates the formation of a new cell type, contributing to developmental diversity and, eventually, species diversification. The micromere of the sea urchin embryo may serve as one of those examples: an ACD at the 16-cell stage forms micromeres unique to echinoids among echinoderms. We previously reported that a polarity factor, activator of G-protein signaling (AGS), plays a crucial role in micromere formation. However, AGS and its associated ACD factors are present in all echinoderms and across most metazoans. This raises the question of what evolutionary modifications of AGS protein or its surrounding molecular environment contributed to the evolutionary acquisition of micromeres only in echinoids. In this study, we learned that the GoLoco motifs at the AGS C-terminus play critical roles in regulating micromere formation in sea urchin embryos. Further, other echinoderms’ AGS or chimeric AGS that contain the C-terminus of AGS orthologs from various organisms showed varied localization and function in micromere formation. In contrast, the sea star or the pencil urchin orthologs of other ACD factors were consistently localized at the vegetal cortex in the sea urchin embryo, suggesting that AGS may be a unique variable factor that facilitates ACD diversity among echinoderms. Consistently, sea urchin AGS appears to facilitate micromere-like cell formation and accelerate the enrichment timing of the germline factor Vasa during early embryogenesis of the pencil urchin, an ancestral type of sea urchin. Based on these observations, we propose that the molecular evolution of a single polarity factor facilitates ACD diversity while preserving the core ACD machinery among echinoderms and beyond during evolution.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Paolo Petazzi, Telma Ventura ... Antonella Fidanza
    Tools and Resources

    A major challenge in the stem cell biology field is the ability to produce fully functional cells from induced pluripotent stem cells (iPSCs) that are a valuable resource for cell therapy, drug screening, and disease modelling. Here, we developed a novel inducible CRISPR-mediated activation strategy (iCRISPRa) to drive the expression of multiple endogenous transcription factors (TFs) important for in vitro cell fate and differentiation of iPSCs to haematopoietic progenitor cells. This work has identified a key role for IGFBP2 in developing haematopoietic progenitors. We first identified nine candidate TFs that we predicted to be involved in blood cell emergence during development, then generated tagged gRNAs directed to the transcriptional start site of these TFs that could also be detected during single-cell RNA sequencing (scRNAseq). iCRISPRa activation of these endogenous TFs resulted in a significant expansion of arterial-fated endothelial cells expressing high levels of IGFBP2, and our analysis indicated that IGFBP2 is involved in the remodelling of metabolic activity during in vitro endothelial to haematopoietic transition. As well as providing fundamental new insights into the mechanisms of haematopoietic differentiation, the broader applicability of iCRISPRa provides a valuable tool for studying dynamic processes in development and for recapitulating abnormal phenotypes characterised by ectopic activation of specific endogenous gene expression in a wide range of systems.