GGGGCC microsatellite RNA is neuritically localized, induces branching defects, and perturbs transport granule function

  1. Alondra Schweizer Burguete
  2. Sandra Almeida
  3. Fen-Biao Gao
  4. Robert Kalb
  5. Michael R Akins
  6. Nancy M Bonini  Is a corresponding author
  1. University of Pennsylvania, United States
  2. University of Massachusetts Medical School, United States
  3. University of Pennsylvania School of Medicine, United States
  4. Drexel University, United States

Abstract

Microsatellite expansions are the leading cause of numerous neurodegenerative disorders. Here we demonstrate that GGGGCC and CAG microsatellite repeat RNAs associated with C9orf72 in ALS/FTD and with polyglutamine diseases, respectively, localize to neuritic granules that undergo active transport into distal neuritic segments. In cultured mammalian spinal cord neurons, the presence of neuritic GGGGCC repeat RNA correlates with neuronal branching defects and the repeat RNA localizes to granules that label with FMRP, a transport granule component. Using a Drosophila GGGGCC expansion disease model, we characterize dendritic branching defects that are modulated by FMRP and Orb2. The human orthologues of these modifiers are misregulated in induced pluripotent stem cell-differentiated neurons from GGGGCC expansion carriers. These data suggest that expanded repeat RNAs interact with the mRNA transport and translation machinery, causing transport granule dysfunction. This could be a novel mechanism contributing to the neuronal defects associated with C9orf72 and other microsatellite expansion diseases.

Article and author information

Author details

  1. Alondra Schweizer Burguete

    Department of Biology, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Sandra Almeida

    Department of Neurology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Fen-Biao Gao

    Department of Neurology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Robert Kalb

    Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Michael R Akins

    Department of Biology, Drexel University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Nancy M Bonini

    Department of Biology, University of Pennsylvania, Philadelphia, United States
    For correspondence
    nbonini@sas.upenn.edu
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: The studies with animal tissue were performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#597) of Children's Hospital of Philadelphia. The human stem cell studies were performed with approval by the Institutional Biosafety Committee, protocol number I-435-10, of the University of Massachusetts Medical School, Worcester, MA.

Copyright

© 2015, Schweizer Burguete et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,063
    views
  • 997
    downloads
  • 79
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alondra Schweizer Burguete
  2. Sandra Almeida
  3. Fen-Biao Gao
  4. Robert Kalb
  5. Michael R Akins
  6. Nancy M Bonini
(2015)
GGGGCC microsatellite RNA is neuritically localized, induces branching defects, and perturbs transport granule function
eLife 4:e08881.
https://doi.org/10.7554/eLife.08881

Share this article

https://doi.org/10.7554/eLife.08881

Further reading

    1. Cell Biology
    2. Immunology and Inflammation
    Alejandro Rosell, Agata Adelajda Krygowska ... Esther Castellano Sanchez
    Research Article

    Macrophages are crucial in the body’s inflammatory response, with tightly regulated functions for optimal immune system performance. Our study reveals that the RAS–p110α signalling pathway, known for its involvement in various biological processes and tumourigenesis, regulates two vital aspects of the inflammatory response in macrophages: the initial monocyte movement and later-stage lysosomal function. Disrupting this pathway, either in a mouse model or through drug intervention, hampers the inflammatory response, leading to delayed resolution and the development of more severe acute inflammatory reactions in live models. This discovery uncovers a previously unknown role of the p110α isoform in immune regulation within macrophages, offering insight into the complex mechanisms governing their function during inflammation and opening new avenues for modulating inflammatory responses.

    1. Cell Biology
    Affiong Ika Oqua, Kin Chao ... Alejandra Tomas
    Research Article

    G protein-coupled receptors (GPCRs) are integral membrane proteins which closely interact with their plasma membrane lipid microenvironment. Cholesterol is a lipid enriched at the plasma membrane with pivotal roles in the control of membrane fluidity and maintenance of membrane microarchitecture, directly impacting on GPCR stability, dynamics, and function. Cholesterol extraction from pancreatic beta cells has previously been shown to disrupt the internalisation, clustering, and cAMP responses of the glucagon-like peptide-1 receptor (GLP-1R), a class B1 GPCR with key roles in the control of blood glucose levels via the potentiation of insulin secretion in beta cells and weight reduction via the modulation of brain appetite control centres. Here, we unveil the detrimental effect of a high cholesterol diet on GLP-1R-dependent glucoregulation in vivo, and the improvement in GLP-1R function that a reduction in cholesterol synthesis using simvastatin exerts in pancreatic islets. We next identify and map sites of cholesterol high occupancy and residence time on active vs inactive GLP-1Rs using coarse-grained molecular dynamics (cgMD) simulations, followed by a screen of key residues selected from these sites and detailed analyses of the effects of mutating one of these, Val229, to alanine on GLP-1R-cholesterol interactions, plasma membrane behaviours, clustering, trafficking and signalling in INS-1 832/3 rat pancreatic beta cells and primary mouse islets, unveiling an improved insulin secretion profile for the V229A mutant receptor. This study (1) highlights the role of cholesterol in regulating GLP-1R responses in vivo; (2) provides a detailed map of GLP-1R - cholesterol binding sites in model membranes; (3) validates their functional relevance in beta cells; and (4) highlights their potential as locations for the rational design of novel allosteric modulators with the capacity to fine-tune GLP-1R responses.