1. Cell Biology
Download icon

GGGGCC microsatellite RNA is neuritically localized, induces branching defects, and perturbs transport granule function

  1. Alondra Schweizer Burguete
  2. Sandra Almeida
  3. Fen-Biao Gao
  4. Robert Kalb
  5. Michael R Akins
  6. Nancy M Bonini  Is a corresponding author
  1. University of Pennsylvania, United States
  2. University of Massachusetts Medical School, United States
  3. University of Pennsylvania School of Medicine, United States
  4. Drexel University, United States
Research Article
  • Cited 53
  • Views 2,776
  • Annotations
Cite this article as: eLife 2015;4:e08881 doi: 10.7554/eLife.08881
Voice your concerns about research culture and research communication: Have your say in our 7th annual survey.

Abstract

Microsatellite expansions are the leading cause of numerous neurodegenerative disorders. Here we demonstrate that GGGGCC and CAG microsatellite repeat RNAs associated with C9orf72 in ALS/FTD and with polyglutamine diseases, respectively, localize to neuritic granules that undergo active transport into distal neuritic segments. In cultured mammalian spinal cord neurons, the presence of neuritic GGGGCC repeat RNA correlates with neuronal branching defects and the repeat RNA localizes to granules that label with FMRP, a transport granule component. Using a Drosophila GGGGCC expansion disease model, we characterize dendritic branching defects that are modulated by FMRP and Orb2. The human orthologues of these modifiers are misregulated in induced pluripotent stem cell-differentiated neurons from GGGGCC expansion carriers. These data suggest that expanded repeat RNAs interact with the mRNA transport and translation machinery, causing transport granule dysfunction. This could be a novel mechanism contributing to the neuronal defects associated with C9orf72 and other microsatellite expansion diseases.

Article and author information

Author details

  1. Alondra Schweizer Burguete

    Department of Biology, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Sandra Almeida

    Department of Neurology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Fen-Biao Gao

    Department of Neurology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Robert Kalb

    Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Michael R Akins

    Department of Biology, Drexel University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Nancy M Bonini

    Department of Biology, University of Pennsylvania, Philadelphia, United States
    For correspondence
    nbonini@sas.upenn.edu
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: The studies with animal tissue were performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#597) of Children's Hospital of Philadelphia. The human stem cell studies were performed with approval by the Institutional Biosafety Committee, protocol number I-435-10, of the University of Massachusetts Medical School, Worcester, MA.

Reviewing Editor

  1. Robert H Singer, Albert Einstein College of Medicine, United States

Publication history

  1. Received: May 21, 2015
  2. Accepted: November 30, 2015
  3. Accepted Manuscript published: December 9, 2015 (version 1)
  4. Accepted Manuscript updated: December 15, 2015 (version 2)
  5. Version of Record published: February 4, 2016 (version 3)

Copyright

© 2015, Schweizer Burguete et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,776
    Page views
  • 936
    Downloads
  • 53
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    David W Sanders et al.
    Research Article Updated

    Many enveloped viruses induce multinucleated cells (syncytia), reflective of membrane fusion events caused by the same machinery that underlies viral entry. These syncytia are thought to facilitate replication and evasion of the host immune response. Here, we report that co-culture of human cells expressing the receptor ACE2 with cells expressing SARS-CoV-2 spike, results in synapse-like intercellular contacts that initiate cell-cell fusion, producing syncytia resembling those we identify in lungs of COVID-19 patients. To assess the mechanism of spike/ACE2-driven membrane fusion, we developed a microscopy-based, cell-cell fusion assay to screen ~6000 drugs and >30 spike variants. Together with quantitative cell biology approaches, the screen reveals an essential role for biophysical aspects of the membrane, particularly cholesterol-rich regions, in spike-mediated fusion, which extends to replication-competent SARS-CoV-2 isolates. Our findings potentially provide a molecular basis for positive outcomes reported in COVID-19 patients taking statins and suggest new strategies for therapeutics targeting the membrane of SARS-CoV-2 and other fusogenic viruses.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Asha Mary Joseph et al.
    Research Article Updated

    Translesion synthesis (TLS) is a highly conserved mutagenic DNA lesion tolerance pathway, which employs specialized, low-fidelity DNA polymerases to synthesize across lesions. Current models suggest that activity of these polymerases is predominantly associated with ongoing replication, functioning either at or behind the replication fork. Here we provide evidence for DNA damage-dependent function of a specialized polymerase, DnaE2, in replication-independent conditions. We develop an assay to follow lesion repair in non-replicating Caulobacter and observe that components of the replication machinery localize on DNA in response to damage. These localizations persist in the absence of DnaE2 or if catalytic activity of this polymerase is mutated. Single-stranded DNA gaps for SSB binding and low-fidelity polymerase-mediated synthesis are generated by nucleotide excision repair (NER), as replisome components fail to localize in the absence of NER. This mechanism of gap-filling facilitates cell cycle restoration when cells are released into replication-permissive conditions. Thus, such cross-talk (between activity of NER and specialized polymerases in subsequent gap-filling) helps preserve genome integrity and enhances survival in a replication-independent manner.