Spontaneous neurotransmission signals through store-driven Ca2+ transients to maintain synaptic homeostasis
Abstract
Spontaneous glutamate release-driven NMDA receptor activity exerts a strong influence on synaptic homeostasis. However, the properties of Ca2+ signals that mediate this effect remain unclear. Here, using hippocampal neurons labeled with the fluorescent Ca2+ probes Fluo-4 or GCAMP5, we visualized action potential-independent Ca2+ transients in dendritic regions adjacent to fluorescently labeled presynaptic boutons in physiological levels of extracellular Mg2+. These Ca2+ transients required NMDA receptor activity, and their propensity correlated with acute or genetically induced changes in spontaneous neurotransmitter release. In contrast, they were insensitive to blockers of AMPA receptors, L-type voltage-gated Ca2+ channels, or group I mGluRs. However, inhibition of Ca2+-induced Ca2+ release suppressed these transients and elicited synaptic scaling, a process which required protein translation and eukaryotic elongation factor-2 kinase activity. These results support a critical role for Ca2+-induced Ca2+ release in amplifying NMDA receptor-driven Ca2+ signals at rest for the maintenance of synaptic homeostasis.
Article and author information
Author details
Ethics
Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols of the UT Southwestern Medical Center (APN# 0866-06-05-1)
Copyright
© 2015, Reese & Kavalali
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,855
- views
-
- 694
- downloads
-
- 62
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.