Discrete spatial organization of TGFβ receptors couples receptor multimerization and signaling to cellular tension

  1. Joanna P Rys
  2. Christopher C DuFort
  3. David A Monteiro
  4. Michelle A Baird
  5. Juan A Oses-Prieto
  6. Shreya Chand
  7. Alma L Burlingame
  8. Michael W Davidson
  9. Tamara N Alliston  Is a corresponding author
  1. University of California, Berkeley, United States
  2. University of California, San Francisco, United States
  3. Florida State University, United States

Abstract

Cell surface receptors are central to the cell's ability to generate coordinated responses to the multitude of biochemical and physical cues in the microenvironment. However, the mechanisms by which receptors enable this concerted cellular response remain unclear. To investigate the effect of cellular tension on cell surface receptors, we combined novel high-resolution imaging and single particle tracking with established biochemical assays to examine TGFβ signaling. We find that TGFβ receptors are discretely organized to segregated spatial domains at the cell surface. Integrin-rich focal adhesions organize TβRII around TβRI, limiting the integration of TβRII while sequestering TβRI at these sites. Disruption of cellular tension leads to a collapse of this spatial organization and drives formation of heteromeric TβRI/TβRII complexes and Smad activation. This work details a novel mechanism by which cellular tension regulates TGFβ receptor organization, multimerization, and function, providing new insight into the mechanisms that integrate biochemical and physical cues.

Article and author information

Author details

  1. Joanna P Rys

    University of California, Berkeley-University of California, San Francisco Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Christopher C DuFort

    Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. David A Monteiro

    University of California, Berkeley-University of California, San Francisco Graduate Program in Bioengineering, University of California, Berkeley, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Michelle A Baird

    National High Magnetic Field Laboratory, Department of Biological Science, Florida State University, Tallahassee, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Juan A Oses-Prieto

    Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Shreya Chand

    Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Alma L Burlingame

    Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Michael W Davidson

    National High Magnetic Field Laboratory, Department of Biological Science, Florida State University, Tallahassee, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Tamara N Alliston

    University of California, Berkeley-University of California, San Francisco Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, United States
    For correspondence
    tamara.alliston@ucsf.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Johanna Ivaska, University of Turku, Finland

Version history

  1. Received: June 8, 2015
  2. Accepted: November 4, 2015
  3. Accepted Manuscript published: December 10, 2015 (version 1)
  4. Version of Record published: January 19, 2016 (version 2)

Copyright

© 2015, Rys et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,516
    views
  • 549
    downloads
  • 33
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Joanna P Rys
  2. Christopher C DuFort
  3. David A Monteiro
  4. Michelle A Baird
  5. Juan A Oses-Prieto
  6. Shreya Chand
  7. Alma L Burlingame
  8. Michael W Davidson
  9. Tamara N Alliston
(2015)
Discrete spatial organization of TGFβ receptors couples receptor multimerization and signaling to cellular tension
eLife 4:e09300.
https://doi.org/10.7554/eLife.09300

Share this article

https://doi.org/10.7554/eLife.09300

Further reading

    1. Cell Biology
    Mathieu C Husser, Nhat P Pham ... Alisa Piekny
    Tools and Resources

    Endogenous tags have become invaluable tools to visualize and study native proteins in live cells. However, generating human cell lines carrying endogenous tags is difficult due to the low efficiency of homology-directed repair. Recently, an engineered split mNeonGreen protein was used to generate a large-scale endogenous tag library in HEK293 cells. Using split mNeonGreen for large-scale endogenous tagging in human iPSCs would open the door to studying protein function in healthy cells and across differentiated cell types. We engineered an iPS cell line to express the large fragment of the split mNeonGreen protein (mNG21-10) and showed that it enables fast and efficient endogenous tagging of proteins with the short fragment (mNG211). We also demonstrate that neural network-based image restoration enables live imaging studies of highly dynamic cellular processes such as cytokinesis in iPSCs. This work represents the first step towards a genome-wide endogenous tag library in human stem cells.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Natalia Dolgova, Eva-Maria E Uhlemann ... Oleg Y Dmitriev
    Research Article

    Mediator of ERBB2-driven Cell Motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.