1. Neuroscience
Download icon

Corticostriatal dynamics encode the refinement of specific behavioral variability during skill learning

  1. Fernando J Santos
  2. Rodrigo F Oliveira
  3. Xin Jin
  4. Rui M Costa  Is a corresponding author
  1. Fundação Champalimaud, Portugal
  2. Salk Institute for Biological Studies, United States
Research Article
  • Cited 21
  • Views 3,308
  • Annotations
Cite this article as: eLife 2015;4:e09423 doi: 10.7554/eLife.09423

Abstract

Learning to perform a complex motor task requires the optimization of specific behavioral features to cope with task constraints. We show that when mice learn a novel motor paradigm they differentially refine specific behavioral features. Animals trained to perform progressively faster sequences of lever presses to obtain reinforcement reduced variability in sequence frequency, but increased variability in an orthogonal feature (sequence duration). Trial-to-trial variability of the activity of motor cortex and striatal projection neurons was higher early in training and subsequently decreased with learning, without changes in average firing rate. As training progressed, variability in corticostriatal activity became progressively more correlated with behavioral variability, but specifically with variability in frequency. Corticostriatal plasticity was required for the reduction in frequency variability, but not for variability in sequence duration. These data suggest that during motor learning corticostriatal dynamics encode the refinement of specific behavioral features that change the probability of obtaining outcomes.

Article and author information

Author details

  1. Fernando J Santos

    Champalimaud Neuroscience Programme, Fundação Champalimaud, Lisbon, Portugal
    Competing interests
    No competing interests declared.
  2. Rodrigo F Oliveira

    Champalimaud Neuroscience Programme, Fundação Champalimaud, Lisbon, Portugal
    Competing interests
    No competing interests declared.
  3. Xin Jin

    Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    No competing interests declared.
  4. Rui M Costa

    Champalimaud Neuroscience Programme, Fundação Champalimaud, Lisbon, Portugal
    For correspondence
    rui.costa@neuro.fchampalimaud.org
    Competing interests
    Rui M Costa, Reviewing editor, eLife.

Ethics

Animal experimentation: All experimental procedures were carried in accordance to the ethics committee guidelines of the Champalimaud Foundation and Instituto Gulbenkian de Ciência, and with approval of the Portuguese DGAV (ref 0421).

Reviewing Editor

  1. Ole Kiehn, Karolinska Institutet, Sweden

Publication history

  1. Received: June 13, 2015
  2. Accepted: September 28, 2015
  3. Accepted Manuscript published: September 29, 2015 (version 1)
  4. Version of Record published: October 23, 2015 (version 2)

Copyright

© 2015, Santos et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,308
    Page views
  • 961
    Downloads
  • 21
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, PubMed Central, Crossref.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

  1. Further reading

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Brian Q Geuther et al.
    Research Article Updated

    Automated detection of complex animal behaviors remains a challenging problem in neuroscience, particularly for behaviors that consist of disparate sequential motions. Grooming is a prototypical stereotyped behavior that is often used as an endophenotype in psychiatric genetics. Here, we used mouse grooming behavior as an example and developed a general purpose neural network architecture capable of dynamic action detection at human observer-level performance and operating across dozens of mouse strains with high visual diversity. We provide insights into the amount of human annotated training data that are needed to achieve such performance. We surveyed grooming behavior in the open field in 2457 mice across 62 strains, determined its heritable components, conducted GWAS to outline its genetic architecture, and performed PheWAS to link human psychiatric traits through shared underlying genetics. Our general machine learning solution that automatically classifies complex behaviors in large datasets will facilitate systematic studies of behavioral mechanisms.

    1. Immunology and Inflammation
    2. Neuroscience
    Alessio Vittorio Colombo et al.
    Research Article

    Previous studies have identified a crucial role of the gut microbiome in modifying Alzheimer’s disease (AD) progression. However, the mechanisms of microbiome–brain interaction in AD were so far unknown. Here, we identify microbiota-derived short chain fatty acids (SCFA) as microbial metabolites which promote Aβ deposition. Germ-free (GF) AD mice exhibit a substantially reduced Aβ plaque load and markedly reduced SCFA plasma concentrations; conversely, SCFA supplementation to GF AD mice increased the Aβ plaque load to levels of conventionally colonized (specific pathogen-free [SPF]) animals and SCFA supplementation to SPF mice even further exacerbated plaque load. This was accompanied by the pronounced alterations in microglial transcriptomic profile, including upregulation of ApoE. Despite increased microglial recruitment to Aβ plaques upon SCFA supplementation, microglia contained less intracellular Aβ. Taken together, our results demonstrate that microbiota-derived SCFA are critical mediators along the gut-brain axis which promote Aβ deposition likely via modulation of the microglial phenotype.