Homo naledi, a new species of the genus Homo from the Dinaledi Chamber, South Africa

  1. Lee R Berger  Is a corresponding author
  2. John Hawks
  3. Darryl J de Ruiter
  4. Steven E Churchill
  5. Peter Schmid
  6. Lucas K Delezene
  7. Tracy L Kivell
  8. Heather M Garvin
  9. Scott A Williams
  10. Jeremy M DeSilva
  11. Matthew M Skinner
  12. Charles M Musiba
  13. Noel Cameron
  14. Trenton W Holliday
  15. William Harcourt-Smith
  16. Rebecca R Ackermann
  17. Markus Bastir
  18. Barry Bogin
  19. Debra Bolter
  20. Juliet Brophy
  21. Zachary D Cofran
  22. Kimberly A Congdon
  23. Andrew S Deane
  24. Mana Dembo
  25. Michelle Drapeau
  26. Marina C Elliott
  27. Elen M Feuerriegel
  28. Daniel Garcia-Martinez
  29. David J Green
  30. Alia Gurtov
  31. Joel D Irish
  32. Ashley Kruger
  33. Myra F Laird
  34. Damiano Marchi
  35. Marc R Meyer
  36. Shahed Nalla
  37. Enquye W Negash
  38. Caley M Orr
  39. Davorka Radovcic
  40. Lauren Schroeder
  41. Jill E Scott
  42. Zachary Throckmorton
  43. Matthew W Tocheri
  44. Caroline VanSickle
  45. Christopher S Walker
  46. Pianpian Wei
  47. Bernhard Zipfel
  1. University of the Witwatersrand, South Africa
  2. University of Wisconsin-Madison, United States
  3. Texas A&M University, United States
  4. Duke University, United States
  5. University of Zurich, Switzerland
  6. University of Arkansas, United States
  7. University of Kent, United Kingdom
  8. Max Planck Institute for Evolutionary Anthropology, Germany
  9. Mercyhurst University, United States
  10. New York University, United States
  11. New York Consortium in Evolutionary Primatology, United States
  12. Dartmouth College, United States
  13. University of Colorado Denver, United States
  14. Loughborough University, United Kingdom
  15. Tulane University, United States
  16. Lehman College, United States
  17. American Museum of Natural History, United States
  18. University of Cape Town, South Africa
  19. Museo Nacional de Ciencias Naturales, Spain
  20. Modesto Junior College, United States
  21. Louisiana State University, United States
  22. Nazarbayev University, Kazakhstan
  23. University of Missouri, United States
  24. University of Kentucky College of Medicine, United States
  25. Simon Fraser University, Canada
  26. Université de Montréal, Canada
  27. Australian National University, Australia
  28. Biology Department, Universidad Autònoma de Madrid, Spain
  29. Midwestern University, United States
  30. Liverpool John Moores University, United Kingdom
  31. University of Pisa, Italy
  32. Chaffey College, United States
  33. University of Johannesburg, South Africa
  34. George Washington University, United States
  35. University of Colorado School of Medicine, United States
  36. Croatian Natural History Museum, Croatia
  37. University of Iowa, United States
  38. Lincoln Memorial University, United States
  39. Smithsonian Institution, United States
  40. Department of Anthropology, Lakehead University, Canada
  41. Institute of Vertebrate Paleontology and Paleoanthropology, China
22 figures, 3 tables and 2 additional files

Figures

Dinaledi skeletal specimens.

The figure includes approximately all of the material incorporated in this diagnosis, including the holotype specimen, paratypes and referred material. These make up 737 partial or complete anatomical elements, many of which consist of several refitted specimens. Specimens not identified to element, such as non-diagnostic long bone or cranial fragments, and a subset of fragile specimens are not shown here. The ‘skeleton’ layout in the center of the photo is a composite of elements that represent multiple individuals. This view is foreshortened; the table upon which the bones are arranged is 120-cm wide for scale.

https://doi.org/10.7554/eLife.09560.003
Holotype specimen of Homo naledi, Dinaledi Hominin 1 (DH1).

U.W. 101-1473 cranium in (A) posterior and (B) frontal views (frontal view minus the frontal fragment to show calvaria interior). U.W. 101-1277 maxilla in (C) medial, (D) frontal, (E) superior, and (F) occlusal views. (G) U.W. 101-1473 cranium in anatomical alignment with occluded U.W. 101-1277 maxilla and U.W. 101-1261 mandible in left lateral view. U.W. 101-1277 mandible in (H) occlusal, (I) basal, (J) right lateral, and (K) anterior views. Scale bar = 10 cm.

https://doi.org/10.7554/eLife.09560.019
Cranial paratypes.

(A) DH2, right lateral view. (B) DH5, left lateral view. (C) DH4, right lateral view. (D) DH4, posterior view. Scale bar = 10 cm.

https://doi.org/10.7554/eLife.09560.005
Paratype DH3.

(A) Frontal view. (B) Left lateral view, with calvaria in articulation with the mandible (U.W. 101-361). (C) Basal view. Mandible in (D) medial view; (E) occlusal view; (F) basal view. DH3 was a relatively old individual at time of death, with extreme tooth wear. Scale bar = 10 cm.

https://doi.org/10.7554/eLife.09560.006
U.W. 101-377 mandible.

(A) Lateral view; (B) medial view; (C) basal view; (D) occlusal view. (D) The distinctive mandibular premolar morphology with elongated talonids in unworn state. Scale bar = 2 cm.

https://doi.org/10.7554/eLife.09560.007
Hand 1.

Palmar view on left; dorsal view on right. This hand was discovered in articulation and all bones are represented except for the pisiform. The proportions of digits are humanlike and visually apparent, as are the expanded distal apical tufts on all digits, the robust pollical ray, and the unique first metacarpal morphology.

https://doi.org/10.7554/eLife.09560.008
U.W. 101-1391 paratype femur.

(A) Medial view; (B) posterior view; (C) lateral view; (D) anterior view. The femur neck is relatively long and anteroposteriorly compressed. The anteversion of the neck is evident in medial view. Scale bar = 2 cm.

https://doi.org/10.7554/eLife.09560.009
U.W. 101-484 paratype tibia.

(A) Anterior view; (B) medial view; (C) posterior view; (D) lateral view. The tibiae are notably slender for their length. Scale bar = 10 cm.

https://doi.org/10.7554/eLife.09560.010
Foot 1 in (A) dorsal view; and (B) medial view.

(C) Proximal articular surfaces of the metatarsals of Foot 1, shown in articulation to illustrate transverse arch structure. Scale bar = 10 cm.

https://doi.org/10.7554/eLife.09560.011
Maximum tibia length in H. naledi and other hominins.

Maximum tibia length for U.W. 101-484, compared to other nearly complete hominin tibia specimens. Australopithecus afarensis represented by A.L. 288-1 and KSD-VP-1/1 (Haile-Selassie et al., 2010); Homo erectus represented by D3901 from Dmanisi and KNM-WT 15000; Homo habilis by OH 35; Homo floresiensis by LB1 and LB8 (Brown et al., 2004; Morwood et al., 2005). Chimpanzee and contemporary European ancestry humans from Cleveland Museum of Natural History (Lee, 2001); Andaman Islanders from Stock (2013). Vertical lines represent sample ranges; bars represent 1 standard deviation.

https://doi.org/10.7554/eLife.09560.015
Virtual reconstruction of the endocranium of the larger composite cranium from DH1 and DH2 overlaid with the ectocranial surfaces.

(A) Lateral view. (B) Superior view. The resulting estimate of endocranial volume is 560cc. Scale bar = 10 cm.

https://doi.org/10.7554/eLife.09560.016
Brain size and tooth size in hominins.

The buccolingual breadth of the first maxillary molar is shown here in comparison to endocranial volume for many hominin species. H. naledi occupies a position with relatively small molar size (comparable to later Homo) and relatively small endocranial volume (comparable to australopiths). The range of variation within the Dinaledi sample is also fairly small, in particular in comparison to the extensive range of variation within the H. erectus sensu lato. Vertical lines represent the range of endocranial volume estimates known for each taxon; each vertical line meets the horizontal line representing M1 BL diameter at the mean for each taxon. Ranges are illustrated here instead of data points because the ranges of endocranial volume in several species are established by specimens that do not preserve first maxillary molars.

https://doi.org/10.7554/eLife.09560.017
Selected pelvic specimens of H. naledi.

U.W. 101-1100 ilium in (A) lateral view showing a weak iliac pillar relatively near the anterior edge of the ilium, with no cristal tubercle development; (B) anterior view, angled to demonstrate the degree of flare, which is clear in comparison to the subarcuate surface. U.W. 101-723 immature sacrum in (C) anterior view; and (D) superior view. U.W. 101-1112 ischium in (E) lateral view; and (F) anterior view, demonstrating relatively short tuberacetabular diameter. Scale bar = 2 cm.

https://doi.org/10.7554/eLife.09560.018
First metacarpals of H. naledi.

Seven first metacarpals have been recovered from the Dinaledi Chamber. U.W. 101-1321 is the right first metacarpal of the associated Hand 1 found in articulation. U.W. 101-1282 and U.W. 101-1641 are anatomically similar left and right first metacarpals, which we hypothesize as antimeres, both were recovered from excavation. U.W. 101-007 was collected from the surface of the chamber, and exhibits the same distinctive morphological characteristics as all the first metacarpals in the assemblage. All of these show a marked robusticity of the distal half of the bone, a very narrow, ‘waisted’ appearance to the proximal shaft and proximal articular surface, prominent crests for attachment of M. opponens pollicis and M. first dorsal interosseous, and a prominent ridge running down the palmar aspect of the bone. The heads of these metacarpals are dorsopalmarly flat and strongly asymmetric, with an enlarged palmar-radial protuberance. These distinctive features are present among all the first metacarpals in the Dinaledi collection, and are absent from any other hominin sample. Their derived nature is evident in comparison to apes and other early hominins, here illustrated with a chimpanzee first metacarpal and the MH2 first metacarpal of Australopithecus sediba.

https://doi.org/10.7554/eLife.09560.004
Posterior view of the virtual reconstruction of DH3.

The resultant mirror image is displayed in blue. The antimeres were aligned by the frontal crest and sagittal suture using the Manual Registration function in GeoMagic Studio 14.0.

https://doi.org/10.7554/eLife.09560.020
Virtual reconstruction of (A) DH2 and (B) occipital portion of DH1.

The actual specimen displays its original coloration and the mirror imaged portion is illustrated in blue.

https://doi.org/10.7554/eLife.09560.021
Postero-lateral view of the virtual reconstruction of a composite cranium from DH3 and DH4.

(A) The surface scan of DH3 was mirror imaged and merged as described in Supplementary Note 8. (B) The scan of DH4 was aligned to the DH3 model. (C) DH4 was then mirror imaged to complete the occipital contour (D).

https://doi.org/10.7554/eLife.09560.022
Virtual reconstruction of a composite cranium from DH1 and DH2.

The surface model of DH2 (blue), consisting of the original scan merged with the mirror image, was then uploaded and aligned with the mirror-imaged DH1 model (pink). Note the similarity in size and shape between DH1 and DH2 observed in the posterior (A) anterior (B) lateral (C) and superior (D) views.

https://doi.org/10.7554/eLife.09560.023
Virtual reconstruction of the endocranium of the composite cranium from DH3 and DH4.

(A) Lateral view. (B) Superior view. (C) Inferior view. In all views, anterior is to towards the left.

https://doi.org/10.7554/eLife.09560.024
Virtual reconstruction of the endocranium of the composite cranium from DH3 and DH4 overlaid with the ectocranial surfaces.

(A) Lateral view. (B) Superior view.

https://doi.org/10.7554/eLife.09560.025
Virtual reconstruction the DH3/DH4 cranial base using a model of Sts 19.

(A) Right lateral view. (B) Left lateral view. (C) Posterior view. (D) Inferior view.

https://doi.org/10.7554/eLife.09560.026
Virtual reconstruction the DH3/DH4 endocranial volume using a cranial base model of Sts 19.

Right lateral view.

https://doi.org/10.7554/eLife.09560.027

Tables

Table 1

Cranial and mandibular measurements for H. naledi, early hominins, and modern humans

https://doi.org/10.7554/eLife.09560.012
Measurement definitions as in Wood (1991)P. aethiopicusP. boiseiP. robustusAu. afarensisAu. africanusAu. sedibaH. nalediH. habilisH. rudolfensisH. erectusMP HomoH. sapiens
Cranium
 Cranial capacity41048549345746742051361077686512661330
 Porion height6727486706781779094101112
 Posterior cranial length35847546044656070799981
 Bi-parietal breadth994989099100103107118129142132
 Bi-temporal breadth10110109108115104101107112126131146127
 Closest approach of temporal linescrest*crest*crest*crest*21565235517210196
 Supraorbital height index465350516056566459566271
 Minimum post-orbital breadth626670776770687578899697
 Superior facial breadth4910010710995868697113110124107
 Post-orbital constriction index6261646981797274818091
 EAM area (as an ellipse)778010370963876958561
 Root of zygomatic process originP4P4P3 to M1P4 to M1P4 to M1P4P3 to P4P4 to M1P4 to M1P4 to M1M1M1
 Petromedian angle13750455031335548525546
Maxilloalveolar process
 Maxilloalveolar length87947869677163576568666955
 Maxilloalveolar breadth88837669686663716872707262
 Palate breadth91324035303629443840385640
 Palate depth at incisive fossa31110109105101311109
 Palate depth at M110371811111310101216151813
Mandible
 Symphysis height141374942393732333137353434
 Symphysis width142262825202118182024181714
 Symphysis area at M1 (as an ellipse)1467571114835623606452467393723519474365
 Corpus height at M1150384236343230262936313128
 Corpus breadth at M1151252926202118162022191913
 Corpus area at M1 (as an ellipse)152742955736540539405326425631458469296
 Mental foramen height index§515054585350404649484850
  1. *

    At least in presumed males.

  2. Post-orbital breadth/superior facial breadth × 100.

  3. Following the formula (π × (corpus height/2) × (corpus breadth/2)).

  4. §

    Height of mental foramen from alveolar border relative to corpus height at the mental foramen.

  5. MP, Middle Pleistocene.

  6. Unless otherwise indicated measurements are defined as in Wood (1991). Chord distances are in mm. Data for H. naledi collected from original fossils or laser scans by DJdeR and HMG; comparative data collected by DJdeR on original fossils and casts and supplemented by data from Wood (1991).

Table 2

Dental measures for H. naledi and comparative hominin species

https://doi.org/10.7554/eLife.09560.013
Maxillary
I1I2CP3P4M1M2M3
MDLLMDLLMDLLMDBLMDBLMDBLMDBLMDBL
Au. anamensisn352677653121010898
mean10.88.77.311.010.69.912.68.913.611.512.913.014.412.514.2
range9.1–12.48.2–9.37.0–7.59.9–12.39.1–11.88.2–11.810.1–14.37.2–12.112.6–14.27.8–14.39.0–16.710.9–16.312.9–16.111.1–15.713.0–15.7
Au. afarensisn7899151512101812161310111111
mean10.78.47.57.29.910.88.812.49.112.412.013.412.914.612.714.5
range9.9–11.87.1–9.76.6–8.26.2–8.18.8–11.69.3–12.57.7–9.711.3–13.47.6–10.811.1–14.510.5–13.812.0–15.012.1–13.613.4–15.210.9–14.813.1–16.3
Au. africanusn15151110161326252020212023242728
mean10.78.36.96.89.910.39.212.79.513.412.913.914.115.714.216.0
range9.4–12.57.4–9.15.8–8.05.6–7.98.8–11.08.7–12.08.5–10.210.7–14.57.2–11.012.4–15.311.7–14.412.9–15.312.1–16.312.8–17.911.2–16.913.1–18.6
Au. sediban1111111111111122
mean10.16.97.26.69.08.89.011.29.312.112.912.012.913.713.013.5
range12.6–13.312.9–14.1
H. naledin548109101077121311977
mean9.46.56.66.28.18.68.010.58.111.011.611.712.212.811.612.4
range8.8–9.86.3–7.06.3–7.05.8–6.67.3–8.98.0–9.67.7–8.49.8–11.07.7–8.710.5–11.210.5–12.411.2–12.411.0–13.011.9–13.611.0–12.711.4–13.4
H. habilisn224423778813137777
mean10.68.07.46.69.09.89.011.99.212.112.713.012.714.312.314.7
range10.1–11.17.3–8.76.7–8.16.0–7.98.5–9.48.5–11.68.1–9.611.0–12.78.5–9.911.0–13.111.6–13.912.1–14.111.8–13.513.5–16.211.3–13.913.2–16.6
H. rudolfensisn11111122222211
mean12.37.711.512.510.513.610.212.514.014.014.315.813.313.5
range9.7–10.711.1–13.813.9–14.213.3–14.814.1–14.614.1–17.6
H. erectusn111266121227273029343222221616
mean10.38.17.78.09.510.08.511.88.111.612.213.212.013.310.512.8
range8.1–12.67.0–11.76.0–8.36.9–8.58.5–11.19.0–11.87.1–10.19.5–13.87.0–9.49.9–13.410.1–14.611.0–15.910.3–13.610.9–15.58.7–14.710.4–15.8
H. neanderthalensisn28373541282916172119232427282221
mean9.78.58.08.48.810.18.010.67.810.611.612.310.912.59.912.3
range8.2–11.87.3–9.95.8–9.35.8–9.97.2–10.07.6–11.46.6–9.38.4–11.85.9–11.58.3–11.79.5–13.511.0–14.28.9–15.910.8–14.68.2–11.49.8–14.6
H. heidelbergensisn21231921272925252223252424232627
mean9.67.87.77.88.89.87.910.67.610.311.211.910.212.38.911.6
range8.7–10.77.1–9.97.2–8.47.3–8.68.1–11.08.8–11.87.1–9.09.2–12.27.0–8.89.1–11.59.9–12.310.3–13.28.1–12.111.1–13.87.6–11.010.0–13.2
MP/LP African Homon6678446610101414202099
mean9.07.87.47.28.99.78.410.88.110.812.313.211.012.99.211.7
range6.3–10.96.6–8.76.0–9.36.1–8.58.2–9.58.8–10.08.1–8.79.9–11.87.5–9.39.4–12.810.4–14.012.0–15.07.8–13.011.0–15.07.6–10.210.0–13.2
Mandibular
I1I2CP3P4M1M2M3
MDLLMDLLMDLLMDBLMDBLMDBLMDBLMDBL
Au. anamensisn21437788889107788
mean6.97.47.88.310.010.412.49.29.111.312.912.314.013.415.313.4
range6.8–6.96.6–8.77.9–8.66.6–13.99.2–11.411.3–13.48.6–10.07.4–9.89.6–13.211.6–13.810.2–14.813.0–15.912.3–14.913.7–17.012.1–15.2
Au. afarensisn7876131627262421322631272623
mean6.77.16.78.08.810.49.610.69.811.013.112.614.313.415.313.5
range5.6–7.75.6–8.05.0–8.06.7–8.87.5–11.78.0–12.47.9–12.68.9–13.87.7–11.49.8–12.810.1–14.811.0–14.012.1–16.511.1–15.213.4–18.111.3–15.3
Au. africanusn11121213232520212523293238383435
mean6.26.77.27.99.410.19.711.510.411.614.013.015.714.516.314.6
range4.8–6.95.7–7.95.6–8.16.6–9.28.5–10.78.2–12.18.8–11.09.9–13.98.7–12.39.3–13.212.4–15.811.2–15.114.2–17.712.8–16.813.5–18.512.2–16.8
Au. sediban11221111222222
mean5.96.67.78.08.19.28.89.713.111.414.512.814.913.2
range7.3–8.07.4–8.613.1–13.111.3–11.514.4–14.512.3–13.214.9–14.912.5–13.6
H. naledin7756779106611119965
mean6.15.46.95.97.17.19.08.88.79.112.210.713.311.213.412.1
range5.7–7.05.3–5.96.6–7.45.9–6.06.4–7.56.9–7.48.2–9.48.2–9.78.3–9.08.5–10.211.3–12.710.3–11.412.3–14.010.7–12.212.9–13.711.7–12.8
H. habilisn2222324433554444
mean6.46.87.47.68.79.09.69.69.910.513.711.915.013.515.413.3
range6.4–6.56.7–7.07.2–7.77.6–7.67.6–9.67.9–10.09.0–10.68.6–11.19.0–10.59.9–11.013.0–14.810.9–12.814.2–15.712.0–15.114.8–15.912.4–14.4
H. rudolfensisn1113366556533
mean5.46.78.39.911.110.111.414.012.716.013.716.414.1
range9.0–10.79.5–12.38.8–11.89.8–12.212.8–15.211.4–13.214.0–18.312.7–14.915.6–17.013.1–14.6
H. erectusn11121416141630302526434341402627
mean6.26.477.28.79910.18.710.112.711.913.312.512.711.7
range4.8–7.45.8–7.15.3–8.16.4–8.57.0–10.38.0–10.47.0–12.08.2–12.07.2–10.38.0–12.59.9–14.810.1–13.311.3–15.310.8–14.310.0–15.210.0–14.2
H. neanderthalensisn9162331364120212325384026271820
mean5.67.26.87.87.88.87.99.17.89.411.811.112.111.312.011.0
range4.2–6.45.2–8.85.9–7.56.8–9.06.7–8.86.8–10.36.6–9.18.0–10.36.5–9.48.5–10.510.1–13.610.2–12.99.3–14.08.8–12.411.2–13.99.9–12.2
H. heidelbergensisn21221920232422222626292929293232
mean5.66.76.57.37.68.77.98.97.28.711.310.611.210.511.510.0
range4.8–6.56.0–7.56.0–7.26.6–8.06.9–9.07.3–10.07.2–9.07.6–11.66.6–8.87.2–11.710.4–13.89.6–13.09.7–14.68.5–13.99.7–13.28.6–12.5
MP/LP African Homon55888888129161620201313
mean6.06.86.87.28.89.68.69.88.610.313.111.812.511.712.411.5
range5.7–6.46.1–7.25.6–8.36.4–8.07.8–10.08.8–10.37.7–9.08.6–11.26.9–9.69.3–11.410.7–14.210.0–13.010.8–15.09.2–13.610.6–13.59.9–12.7
  1. MP, Middle Pleistocene and LP, Late Pleistocene.

Table 3

Dinaledi body mass estimates from femur specimens preserving subtrochanteric diameters

https://doi.org/10.7554/eLife.09560.014
Specimen IDSideAP subtrochanteric breadthML subtrochanteric breadthMass (a)Mass (b)
U.W. 101-002R18.523.640.044.7
U.W. 101-003R21.631.454.555.8
U.W. 101-018R18.123.839.744.4
U.W. 101-226L19.124.041.345.7
U.W. 101-1136R16.925.539.744.4
U.W. 101-1391R18.823.940.845.3
U.W. 101-1475L18.829.046.549.7
U.W. 101-1482L20.728.949.752.1
  1. Regression equations described in ‘Materials and methods’. Mass (a) based on forensic statures from European individuals. Mass (b) based on multiple population sample. The two estimates diverge somewhat for smaller femora.

Additional files

Supplementary file 1

Holotype and paratype specimens and referred materials.

https://doi.org/10.7554/eLife.09560.028
Supplementary file 2

Traits of H. naledi and comparative species.

https://doi.org/10.7554/eLife.09560.029

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lee R Berger
  2. John Hawks
  3. Darryl J de Ruiter
  4. Steven E Churchill
  5. Peter Schmid
  6. Lucas K Delezene
  7. Tracy L Kivell
  8. Heather M Garvin
  9. Scott A Williams
  10. Jeremy M DeSilva
  11. Matthew M Skinner
  12. Charles M Musiba
  13. Noel Cameron
  14. Trenton W Holliday
  15. William Harcourt-Smith
  16. Rebecca R Ackermann
  17. Markus Bastir
  18. Barry Bogin
  19. Debra Bolter
  20. Juliet Brophy
  21. Zachary D Cofran
  22. Kimberly A Congdon
  23. Andrew S Deane
  24. Mana Dembo
  25. Michelle Drapeau
  26. Marina C Elliott
  27. Elen M Feuerriegel
  28. Daniel Garcia-Martinez
  29. David J Green
  30. Alia Gurtov
  31. Joel D Irish
  32. Ashley Kruger
  33. Myra F Laird
  34. Damiano Marchi
  35. Marc R Meyer
  36. Shahed Nalla
  37. Enquye W Negash
  38. Caley M Orr
  39. Davorka Radovcic
  40. Lauren Schroeder
  41. Jill E Scott
  42. Zachary Throckmorton
  43. Matthew W Tocheri
  44. Caroline VanSickle
  45. Christopher S Walker
  46. Pianpian Wei
  47. Bernhard Zipfel
(2015)
Homo naledi, a new species of the genus Homo from the Dinaledi Chamber, South Africa
eLife 4:e09560.
https://doi.org/10.7554/eLife.09560