Pericytes are progenitors for coronary artery smooth muscle

  1. Katharina S Volz
  2. Andrew H Jacobs
  3. Heidi I Chen
  4. Aruna Poduri
  5. Andrew S McKay
  6. Daniel P Riordan
  7. Natalie Kofler
  8. Jan Kitajewski
  9. Irving Weissman
  10. Kristy Red-Horse  Is a corresponding author
  1. Stanford University, United States
  2. Stanford Universitiy, United States
  3. Columbia University Medical Center, United States

Abstract

Epicardial cells on the heart's surface give rise to coronary artery smooth muscle cells (caSMCs) located deep in the myocardium. However, the differentiation steps between epicardial cells and caSMCs are unknown as are the final maturation signals at coronary arteries. Here, we use clonal analysis and lineage tracing to show that caSMCs derive from pericytes, mural cells associated with microvessels, and that these cells are present in adults. During development following the onset of blood flow, pericytes at arterial remodeling sites upregulate Notch3 while endothelial cells express Jagged-1. Deletion of Notch3 disrupts caSMC differentiation. Our data support a model wherein epicardial-derived pericytes populate the entire coronary microvasculature, but differentiate into caSMCs at arterial remodeling zones in response to Notch signaling. Our data is the first demonstration that pericytes are progenitors for smooth muscle, and their presence in adult hearts reveal a new potential cell type for targeting during cardiovascular disease.

Article and author information

Author details

  1. Katharina S Volz

    Stem Cell and Regenerative Medicine PhD Program, Stanford University School of Medicine, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Andrew H Jacobs

    Department of Biological Sciences, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Heidi I Chen

    Department of Biological Sciences, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Aruna Poduri

    Department of Biological Sciences, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Andrew S McKay

    Department of Biological Sciences, Stanford Universitiy, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Daniel P Riordan

    Department of Biochemistry, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Natalie Kofler

    Columbia University Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Jan Kitajewski

    Columbia University Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Irving Weissman

    Institute for Stem Cell and Regenerative Medicine, Ludwig Center, Stanford School of Medicine, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Kristy Red-Horse

    Department of Biological Sciences, Stanford University, Stanford, United States
    For correspondence
    kredhors@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Giulio Cossu, University of Manchester, United Kingdom

Ethics

Animal experimentation: All animal experiments were performed according to protocols approved by the Stanford University Institutional Animal Care and Use Committee (IACUC) under the protocol #26923 (Assurance #A3213-01). The laboratory animal care program at Stanford University is fully accredited by the Association for Assessment and Accreditation of Laboratory Animal Care International (AAALAC).

Version history

  1. Received: July 13, 2015
  2. Accepted: October 12, 2015
  3. Accepted Manuscript published: October 19, 2015 (version 1)
  4. Version of Record published: December 23, 2015 (version 2)

Copyright

© 2015, Volz et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,126
    views
  • 1,425
    downloads
  • 168
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Katharina S Volz
  2. Andrew H Jacobs
  3. Heidi I Chen
  4. Aruna Poduri
  5. Andrew S McKay
  6. Daniel P Riordan
  7. Natalie Kofler
  8. Jan Kitajewski
  9. Irving Weissman
  10. Kristy Red-Horse
(2015)
Pericytes are progenitors for coronary artery smooth muscle
eLife 4:e10036.
https://doi.org/10.7554/eLife.10036

Share this article

https://doi.org/10.7554/eLife.10036

Further reading

    1. Developmental Biology
    2. Medicine
    Stephen E Flaherty III, Olivier Bezy ... Zhidan Wu
    Research Article

    From a forward mutagenetic screen to discover mutations associated with obesity, we identified mutations in the Spag7 gene linked to metabolic dysfunction in mice. Here, we show that SPAG7 KO mice are born smaller and develop obesity and glucose intolerance in adulthood. This obesity does not stem from hyperphagia, but a decrease in energy expenditure. The KO animals also display reduced exercise tolerance and muscle function due to impaired mitochondrial function. Furthermore, SPAG7-deficiency in developing embryos leads to intrauterine growth restriction, brought on by placental insufficiency, likely due to abnormal development of the placental junctional zone. This insufficiency leads to loss of SPAG7-deficient fetuses in utero and reduced birth weights of those that survive. We hypothesize that a ‘thrifty phenotype’ is ingrained in SPAG7 KO animals during development that leads to adult obesity. Collectively, these results indicate that SPAG7 is essential for embryonic development and energy homeostasis later in life.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Nikola Sekulovski, Jenna C Wettstein ... Kenichiro Taniguchi
    Research Article

    Amniogenesis, a process critical for continuation of healthy pregnancy, is triggered in a collection of pluripotent epiblast cells as the human embryo implants. Previous studies have established that bone morphogenetic protein (BMP) signaling is a major driver of this lineage specifying process, but the downstream BMP-dependent transcriptional networks that lead to successful amniogenesis remain to be identified. This is, in part, due to the current lack of a robust and reproducible model system that enables mechanistic investigations exclusively into amniogenesis. Here, we developed an improved model of early amnion specification, using a human pluripotent stem cell-based platform in which the activation of BMP signaling is controlled and synchronous. Uniform amniogenesis is seen within 48 hr after BMP activation, and the resulting cells share transcriptomic characteristics with amnion cells of a gastrulating human embryo. Using detailed time-course transcriptomic analyses, we established a previously uncharacterized BMP-dependent amniotic transcriptional cascade, and identified markers that represent five distinct stages of amnion fate specification; the expression of selected markers was validated in early post-implantation macaque embryos. Moreover, a cohort of factors that could potentially control specific stages of amniogenesis was identified, including the transcription factor TFAP2A. Functionally, we determined that, once amniogenesis is triggered by the BMP pathway, TFAP2A controls the progression of amniogenesis. This work presents a temporally resolved transcriptomic resource for several previously uncharacterized amniogenesis states and demonstrates a critical intermediate role for TFAP2A during amnion fate specification.