Unravelling druggable signalling networks that control F508del-CFTR proteostasis

  1. Ramanath Narayana Hegde
  2. Seetharaman Parashuraman
  3. Francesco Iorio
  4. Fabiana Ciciriello
  5. Fabrizio Capuani
  6. Annamaria Carissimo
  7. Diego Carrella
  8. Vincenzo Belcastro
  9. Advait Subramanian
  10. Laura Bounti
  11. Maria Persico
  12. Graeme Carlile
  13. Luis Galietta
  14. David Y Thomas
  15. Diego Di Bernardo
  16. Alberto Luini  Is a corresponding author
  1. National Research Council, Italy
  2. European Molecular Biology Laboratory, European Bioinformatics Institute, United Kingdom
  3. Telethon Institute of Genetics and Medicine, Italy
  4. University of Rome, La Sapienza, Italy
  5. Institute of Protein Biochemistry, Italy
  6. KU Leuven University, Italy
  7. McGill University, Canada
  8. Institute of Giannina Gaslini, Italy

Abstract

Cystic fibrosis (CF) is caused by mutations in CF transmembrane conductance regulator (CFTR). The most frequent mutation (F508del-CFTR) results in altered proteostasis, i.e., in the misfolding and intracellular degradation of the protein. The F508del-CFTR proteostasis machinery and its homeostatic regulation are well studied, while the question whether 'classical' signalling pathways and phosphorylation cascades might control proteostasis remains barely explored. Here, we have unravelled signalling cascades acting selectively on the F508del-CFTR folding-trafficking defects by analysing the mechanisms of action of F508del-CFTR proteostasis regulator drugs through an approach based on transcriptional profiling followed by deconvolution of their gene signatures. Targeting multiple components of these signalling pathways resulted in potent and specific correction of F508del-CFTR proteostasis and in synergy with pharmacochaperones. These results provide new insights into the physiology of cellular proteostasis and a rational basis for developing effective pharmacological correctors of the F508del-CFTR defect.

Article and author information

Author details

  1. Ramanath Narayana Hegde

    Institute of Protein Biochemistry, National Research Council, Naples, Italy
    Competing interests
    The authors declare that no competing interests exist.
  2. Seetharaman Parashuraman

    Institute of Protein Biochemistry, National Research Council, Naples, Italy
    Competing interests
    The authors declare that no competing interests exist.
  3. Francesco Iorio

    Wellcome Trust Genome Campus, European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Fabiana Ciciriello

    Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
    Competing interests
    The authors declare that no competing interests exist.
  5. Fabrizio Capuani

    Department of Physics, University of Rome, La Sapienza, Rome, Italy
    Competing interests
    The authors declare that no competing interests exist.
  6. Annamaria Carissimo

    Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
    Competing interests
    The authors declare that no competing interests exist.
  7. Diego Carrella

    Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
    Competing interests
    The authors declare that no competing interests exist.
  8. Vincenzo Belcastro

    Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
    Competing interests
    The authors declare that no competing interests exist.
  9. Advait Subramanian

    National Research Council, Institute of Protein Biochemistry, Naples, Italy
    Competing interests
    The authors declare that no competing interests exist.
  10. Laura Bounti

    KU Leuven University, Naples, Italy
    Competing interests
    The authors declare that no competing interests exist.
  11. Maria Persico

    Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
    Competing interests
    The authors declare that no competing interests exist.
  12. Graeme Carlile

    Department of Biochemistry, McIntyre Medical Sciences Building, McGill University, Montréal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  13. Luis Galietta

    U.O.C. Genetica Medica, Institute of Giannina Gaslini, Genova, Italy
    Competing interests
    The authors declare that no competing interests exist.
  14. David Y Thomas

    Department of Biochemistry, McIntyre Medical Sciences Building, McGill University, Montréal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  15. Diego Di Bernardo

    Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
    Competing interests
    The authors declare that no competing interests exist.
  16. Alberto Luini

    Institute of Protein Biochemistry, National Research Council, Naples, Italy
    For correspondence
    a.luini@ibp.cnr.it
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2015, Hegde et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,714
    views
  • 640
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ramanath Narayana Hegde
  2. Seetharaman Parashuraman
  3. Francesco Iorio
  4. Fabiana Ciciriello
  5. Fabrizio Capuani
  6. Annamaria Carissimo
  7. Diego Carrella
  8. Vincenzo Belcastro
  9. Advait Subramanian
  10. Laura Bounti
  11. Maria Persico
  12. Graeme Carlile
  13. Luis Galietta
  14. David Y Thomas
  15. Diego Di Bernardo
  16. Alberto Luini
(2015)
Unravelling druggable signalling networks that control F508del-CFTR proteostasis
eLife 4:e10365.
https://doi.org/10.7554/eLife.10365

Share this article

https://doi.org/10.7554/eLife.10365

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Pamela Garcia-Saldivar, Cynthia de León ... Hugo Merchant
    Research Article Updated

    We determined the intersubject association between the rhythmic entrainment abilities of human subjects during a synchronization-continuation tapping task (SCT) and the macro- and microstructural properties of their superficial (SWM) and deep (DWM) white matter. Diffusion-weighted images were obtained from 32 subjects who performed the SCT with auditory or visual metronomes and five tempos ranging from 550 to 950 ms. We developed a method to determine the density of short-range fibers that run underneath the cortical mantle, interconnecting nearby cortical regions (U-fibers). Notably, individual differences in the density of U-fibers in the right audiomotor system were correlated with the degree of phase accuracy between the stimuli and taps across subjects. These correlations were specific to the synchronization epoch with auditory metronomes and tempos around 1.5 Hz. In addition, a significant association was found between phase accuracy and the density and bundle diameter of the corpus callosum (CC), forming an interval-selective map where short and long intervals were behaviorally correlated with the anterior and posterior portions of the CC. These findings suggest that the structural properties of the SWM and DWM in the audiomotor system support the tapping synchronization abilities of subjects, as cortical U-fiber density is linked to the preferred tapping tempo and the bundle properties of the CC define an interval-selective topography.

    1. Computational and Systems Biology
    2. Neuroscience
    Matthieu K Chardon, Y Curtis Wang ... Charles J Heckman
    Research Article

    In this study, we develop new reverse engineering (RE) techniques to identify the organization of the synaptic inputs generating firing patterns of populations of neurons. We tested these techniques in silico to allow rigorous evaluation of their effectiveness, using remarkably extensive parameter searches enabled by massively-parallel computation on supercomputers. We chose spinal motoneurons as our target neural system, since motoneurons process all motor commands and have well-established input-output properties. One set of simulated motoneurons was driven by 300,000+ simulated combinations of excitatory, inhibitory, and neuromodulatory inputs. Our goal was to determine if these firing patterns had sufficient information to allow RE identification of the input combinations. Like other neural systems, the motoneuron input-output system is likely non-unique. This non-uniqueness could potentially limit this RE approach, as many input combinations can produce similar outputs. However, our simulations revealed that firing patterns contained sufficient information to sharply restrict the solution space. Thus, our RE approach successfully generated estimates of the actual simulated patterns of excitation, inhibition, and neuromodulation, with variances accounted for ranging from 75–90%. It was striking that nonlinearities induced in firing patterns by the neuromodulation inputs did not impede RE, but instead generated distinctive features in firing patterns that aided RE. These simulations demonstrate the potential of this form of RE analysis. It is likely that the ever-increasing capacity of supercomputers will allow increasingly accurate RE of neuron inputs from their firing patterns from many neural systems.