Embryonic attenuated Wnt/β-catenin signaling defines niche location and long-term stem cell fate in hair follicle

Abstract

Long-term adult stem cells sustain tissue regeneration throughout the lifetime of an organism. They were hypothesized to originate from embryonic progenitor cells that acquire long-term self-renewal ability and multipotency at the end of organogenesis. The process through which this is achieved often remains unclear. Here, we discovered that long-term hair follicle stem cells arise from embryonic progenitor cells occupying a niche location that is defined by attenuated Wnt/β-catenin signaling. Hair follicle initiation is marked by placode formation, which depends on the activation of Wnt/β-catenin signaling. Soon afterwards, a region with attenuated Wnt/β-catenin signaling emerges in the upper follicle. Embryonic progenitor cells residing in this region gain expression of adult stem cell markers and become definitive long-term hair follicle stem cells at the end of organogenesis. Attenuation of Wnt/β-catenin signaling is a prerequisite for hair follicle stem cell specification because it suppresses Sox9, which is required for stem cell formation.

Article and author information

Author details

  1. Zijian Xu

    National Institute of Biological Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Wenjie Wang

    National Institute of Biological Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Kaiju Jiang

    National Institute of Biological Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Zhou Yu

    National Institute of Biological Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Huagnwei Huang

    National Institute of Biological Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Fengchao Wang

    National Institute of Biological Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Bin Zhou

    National Institute of Biological Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Ting Chen

    National Institute of Biological Sciences, Beijing, China
    For correspondence
    chenting@nibs.ac.cn
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Janet Rossant, University of Toronto, Canada

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Biological Sciences. All of the animals were handled according to the guidelines of the Chinese law regulating the usage of experimental animals and the protocols (M0020) approved by the Committee on the Ethics of Animal Experiments of the National Institute of Biological Sciences, Beijing. All surgery was performed under combination anesthesia involving isoflurane and remifentanyl and every effort was made to minimize discomfort and suffering.

Version history

  1. Received: August 2, 2015
  2. Accepted: December 13, 2015
  3. Accepted Manuscript published: December 14, 2015 (version 1)
  4. Version of Record published: February 4, 2016 (version 2)

Copyright

© 2015, Xu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,184
    views
  • 1,330
    downloads
  • 59
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zijian Xu
  2. Wenjie Wang
  3. Kaiju Jiang
  4. Zhou Yu
  5. Huagnwei Huang
  6. Fengchao Wang
  7. Bin Zhou
  8. Ting Chen
(2015)
Embryonic attenuated Wnt/β-catenin signaling defines niche location and long-term stem cell fate in hair follicle
eLife 4:e10567.
https://doi.org/10.7554/eLife.10567

Share this article

https://doi.org/10.7554/eLife.10567

Further reading

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Mayank Verma, Yoko Asakura ... Atsushi Asakura
    Research Article Updated

    Endothelial and skeletal muscle lineages arise from common embryonic progenitors. Despite their shared developmental origin, adult endothelial cells (ECs) and muscle stem cells (MuSCs; satellite cells) have been thought to possess distinct gene signatures and signaling pathways. Here, we shift this paradigm by uncovering how adult MuSC behavior is affected by the expression of a subset of EC transcripts. We used several computational analyses including single-cell RNA-seq (scRNA-seq) to show that MuSCs express low levels of canonical EC markers in mice. We demonstrate that MuSC survival is regulated by one such prototypic endothelial signaling pathway (VEGFA-FLT1). Using pharmacological and genetic gain- and loss-of-function studies, we identify the FLT1-AKT1 axis as the key effector underlying VEGFA-mediated regulation of MuSC survival. All together, our data support that the VEGFA-FLT1-AKT1 pathway promotes MuSC survival during muscle regeneration, and highlights how the minor expression of select transcripts is sufficient for affecting cell behavior.

    1. Biochemistry and Chemical Biology
    2. Stem Cells and Regenerative Medicine
    Parthasarathy Sampathkumar, Heekyung Jung ... Yang Li
    Research Article

    Molecules that facilitate targeted protein degradation (TPD) offer great promise as novel therapeutics. The human hepatic lectin asialoglycoprotein receptor (ASGR) is selectively expressed on hepatocytes. We have previously engineered an anti-ASGR1 antibody-mutant RSPO2 (RSPO2RA) fusion protein (called SWEETS) to drive tissue-specific degradation of ZNRF3/RNF43 E3 ubiquitin ligases, which achieved hepatocyte-specific enhanced Wnt signaling, proliferation, and restored liver function in mouse models, and an antibody–RSPO2RA fusion molecule is currently in human clinical trials. In the current study, we identified two new ASGR1- and ASGR1/2-specific antibodies, 8M24 and 8G8. High-resolution crystal structures of ASGR1:8M24 and ASGR2:8G8 complexes revealed that these antibodies bind to distinct epitopes on opposing sides of ASGR, away from the substrate-binding site. Both antibodies enhanced Wnt activity when assembled as SWEETS molecules with RSPO2RA through specific effects sequestering E3 ligases. In addition, 8M24-RSPO2RA and 8G8-RSPO2RA efficiently downregulate ASGR1 through TPD mechanisms. These results demonstrate the possibility of combining different therapeutic effects and degradation mechanisms in a single molecule.