Identification of a Munc13-sensitive step in chromaffin cell large dense-core vesicle exocytosis

  1. Kwun-nok Mimi Man
  2. Cordelia Imig
  3. Alexander Matthias Walter
  4. Paulo S Pinheiro
  5. David R Stevens
  6. Jens Rettig
  7. Jakob B Sørensen
  8. Benjamin H Cooper
  9. Nils Brose
  10. Sonja M Wojcik  Is a corresponding author
  1. Max-Planck-Institut fuer Experimentelle Medizin, Germany
  2. Leibniz-Institute for Molecular Pharmacology, Germany
  3. University of Copenhagen, Denmark
  4. Saarland University, Germany

Abstract

It is currently unknown whether the molecular steps of large dense-core vesicle (LDCV) docking and priming are identical to the corresponding reactions in synaptic vesicle (SV) exocytosis. Munc13s are essential for SV docking and priming, and we systematically analyzed their role in LDCV exocytosis using chromaffin cells lacking individual isoforms. We show that particularly Munc13-2 plays a fundamental role in LDCV exocytosis, but in contrast to synapses lacking Munc13s, the corresponding chromaffin cells do not exhibit a vesicle docking defect. We further demonstrate that ubMunc13-2 and Munc13-1 confer Ca2+-dependent LDCV priming with similar affinities, but distinct kinetics. Using a mathematical model, we identify an early LDCV priming step that is strongly dependent upon Munc13s. Our data demonstrate that the molecular steps of SV and LDCV priming are very similar while SV and LDCV docking mechanisms are distinct.

Article and author information

Author details

  1. Kwun-nok Mimi Man

    Department of Molecular Neurobiology, Max-Planck-Institut fuer Experimentelle Medizin, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Cordelia Imig

    Department of Molecular Neurobiology, Max-Planck-Institut fuer Experimentelle Medizin, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Alexander Matthias Walter

    Leibniz-Institute for Molecular Pharmacology, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Paulo S Pinheiro

    Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, Lundbeck Foundation Center for Biomembranes in Nanomedicine, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  5. David R Stevens

    Department of Physiology, Saarland University, Homburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Jens Rettig

    Department of Physiology, Saarland University, Homburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Jakob B Sørensen

    Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, Lundbeck Foundation Center for Biomembranes in Nanomedicine, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  8. Benjamin H Cooper

    Department of Molecular Neurobiology, Max-Planck-Institut fuer Experimentelle Medizin, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Nils Brose

    Department of Molecular Neurobiology, Max-Planck-Institut fuer Experimentelle Medizin, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Sonja M Wojcik

    Department of Molecular Neurobiology, Max-Planck-Institut fuer Experimentelle Medizin, Göttingen, Germany
    For correspondence
    wojcik@em.mpg.de
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Axel T Brunger, Stanford University, United States

Ethics

Animal experimentation: All experiments were performed in compliance with the regulations of the local Animal Care and Use Committee of Lower Saxony, Oldenburg, Germany.

Version history

  1. Received: August 5, 2015
  2. Accepted: November 16, 2015
  3. Accepted Manuscript published: November 17, 2015 (version 1)
  4. Version of Record published: March 8, 2016 (version 2)

Copyright

© 2015, Man et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,733
    views
  • 691
    downloads
  • 40
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kwun-nok Mimi Man
  2. Cordelia Imig
  3. Alexander Matthias Walter
  4. Paulo S Pinheiro
  5. David R Stevens
  6. Jens Rettig
  7. Jakob B Sørensen
  8. Benjamin H Cooper
  9. Nils Brose
  10. Sonja M Wojcik
(2015)
Identification of a Munc13-sensitive step in chromaffin cell large dense-core vesicle exocytosis
eLife 4:e10635.
https://doi.org/10.7554/eLife.10635

Share this article

https://doi.org/10.7554/eLife.10635

Further reading

    1. Neuroscience
    Daniel Hoops, Robert Kyne ... Cecilia Flores
    Short Report

    Dopamine axons are the only axons known to grow during adolescence. Here, using rodent models, we examined how two proteins, Netrin-1 and its receptor, UNC5C, guide dopamine axons toward the prefrontal cortex and shape behaviour. We demonstrate in mice (Mus musculus) that dopamine axons reach the cortex through a transient gradient of Netrin-1-expressing cells – disrupting this gradient reroutes axons away from their target. Using a seasonal model (Siberian hamsters; Phodopus sungorus) we find that mesocortical dopamine development can be regulated by a natural environmental cue (daylength) in a sexually dimorphic manner – delayed in males, but advanced in females. The timings of dopamine axon growth and UNC5C expression are always phase-locked. Adolescence is an ill-defined, transitional period; we pinpoint neurodevelopmental markers underlying this period.

    1. Neuroscience
    Baba Yogesh, Georg B Keller
    Research Article

    Acetylcholine is released in visual cortex by axonal projections from the basal forebrain. The signals conveyed by these projections and their computational significance are still unclear. Using two-photon calcium imaging in behaving mice, we show that basal forebrain cholinergic axons in the mouse visual cortex provide a binary locomotion state signal. In these axons, we found no evidence of responses to visual stimuli or visuomotor prediction errors. While optogenetic activation of cholinergic axons in visual cortex in isolation did not drive local neuronal activity, when paired with visuomotor stimuli, it resulted in layer-specific increases of neuronal activity. Responses in layer 5 neurons to both top-down and bottom-up inputs were increased in amplitude and decreased in latency, whereas those in layer 2/3 neurons remained unchanged. Using opto- and chemogenetic manipulations of cholinergic activity, we found acetylcholine to underlie the locomotion-associated decorrelation of activity between neurons in both layer 2/3 and layer 5. Our results suggest that acetylcholine augments the responsiveness of layer 5 neurons to inputs from outside of the local network, possibly enabling faster switching between internal representations during locomotion.