1. Neuroscience
Download icon

Nanoconnectomic upper bound on the variability of synaptic plasticity

  1. Thomas M Bartol  Is a corresponding author
  2. Cailey Bromer
  3. Justin P Kinney
  4. Micheal A Chirillo
  5. Jennifer N Bourne
  6. Kristen M Harris
  7. Terrence J Sejnowski
  1. Howard Hughes Medical Institute, Salk Institute for Biological Studies, United States
  2. Massachusetts Institute of Technology, United States
  3. The University of Texas at Austin, United States
  4. University of Colorado Denver, United States
Research Article
  • Cited 121
  • Views 32,603
  • Annotations
Cite this article as: eLife 2015;4:e10778 doi: 10.7554/eLife.10778

Abstract

Information in a computer is quantified by the number of bits that can be stored and recovered. An important question about the brain is how much information can be stored at a synapse through synaptic plasticity, which depends on the history of probabilistic synaptic activity. The strong correlation between size and efficacy of a synapse allowed us to estimate the variability of synaptic plasticity. In an EM reconstruction of hippocampal neuropil we found single axons making two or more synaptic contacts onto the same dendrites, having shared histories of presynaptic and postsynaptic activity. The spine heads and neck diameters, but not neck lengths, of these pairs were nearly identical in size. We found that there is a minimum of 26 distinguishable synaptic strengths, corresponding to storing 4.7 bits of information at each synapse. Because of stochastic variability of synaptic activation the observed precision requires averaging activity over several minutes.

Article and author information

Author details

  1. Thomas M Bartol

    Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, United States
    For correspondence
    bartol@salk.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Cailey Bromer

    Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Justin P Kinney

    Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Micheal A Chirillo

    Center for Learning and Memory, Department of Neuroscience, The University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jennifer N Bourne

    University of Colorado Denver, Denver, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Kristen M Harris

    Center for Learning and Memory, Department of Neuroscience, The University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Terrence J Sejnowski

    Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Sacha B Nelson, Brandeis University, United States

Publication history

  1. Received: August 11, 2015
  2. Accepted: November 29, 2015
  3. Accepted Manuscript published: November 30, 2015 (version 1)
  4. Version of Record published: January 20, 2016 (version 2)

Copyright

© 2015, Bartol et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 32,603
    Page views
  • 3,116
    Downloads
  • 121
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Wucheng Tao et al.
    Research Article Updated

    Long-term potentiation (LTP) is arguably the most compelling cellular model for learning and memory. While the mechanisms underlying the induction of LTP (‘learning’) are well understood, the maintenance of LTP (‘memory’) has remained contentious over the last 20 years. Here, we find that Ca2+-calmodulin-dependent kinase II (CaMKII) contributes to synaptic transmission and is required LTP maintenance. Acute inhibition of CaMKII erases LTP and transient inhibition of CaMKII enhances subsequent LTP. These findings strongly support the role of CaMKII as a molecular storage device.

    1. Medicine
    2. Neuroscience
    Zifei Liang et al.
    Tools and Resources

    1H MRI maps brain structure and function non-invasively through versatile contrasts that exploit inhomogeneity in tissue micro-environments. Inferring histopathological information from MRI findings, however, remains challenging due to absence of direct links between MRI signals and cellular structures. Here, we show that deep convolutional neural networks, developed using co-registered multi-contrast MRI and histological data of the mouse brain, can estimate histological staining intensity directly from MRI signals at each voxel. The results provide three-dimensional maps of axons and myelin with tissue contrasts that closely mimics target histology and enhanced sensitivity and specificity compared to conventional MRI markers. Furthermore, the relative contribution of each MRI contrast within the networks can be used to optimize multi-contrast MRI acquisition. We anticipate our method to be a starting point for translation of MRI results into easy-to-understand virtual histology for neurobiologists and provide resources for validating novel MRI techniques.