1. Neuroscience
Download icon

Nanoconnectomic upper bound on the variability of synaptic plasticity

  1. Thomas M Bartol  Is a corresponding author
  2. Cailey Bromer
  3. Justin P Kinney
  4. Micheal A Chirillo
  5. Jennifer N Bourne
  6. Kristen M Harris
  7. Terrence J Sejnowski
  1. Howard Hughes Medical Institute, Salk Institute for Biological Studies, United States
  2. Massachusetts Institute of Technology, United States
  3. The University of Texas at Austin, United States
  4. University of Colorado Denver, United States
Research Article
  • Cited 89
  • Views 27,315
  • Annotations
Cite this article as: eLife 2015;4:e10778 doi: 10.7554/eLife.10778

Abstract

Information in a computer is quantified by the number of bits that can be stored and recovered. An important question about the brain is how much information can be stored at a synapse through synaptic plasticity, which depends on the history of probabilistic synaptic activity. The strong correlation between size and efficacy of a synapse allowed us to estimate the variability of synaptic plasticity. In an EM reconstruction of hippocampal neuropil we found single axons making two or more synaptic contacts onto the same dendrites, having shared histories of presynaptic and postsynaptic activity. The spine heads and neck diameters, but not neck lengths, of these pairs were nearly identical in size. We found that there is a minimum of 26 distinguishable synaptic strengths, corresponding to storing 4.7 bits of information at each synapse. Because of stochastic variability of synaptic activation the observed precision requires averaging activity over several minutes.

Article and author information

Author details

  1. Thomas M Bartol

    Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, United States
    For correspondence
    bartol@salk.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Cailey Bromer

    Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Justin P Kinney

    Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Micheal A Chirillo

    Center for Learning and Memory, Department of Neuroscience, The University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jennifer N Bourne

    University of Colorado Denver, Denver, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Kristen M Harris

    Center for Learning and Memory, Department of Neuroscience, The University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Terrence J Sejnowski

    Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Sacha B Nelson, Brandeis University, United States

Publication history

  1. Received: August 11, 2015
  2. Accepted: November 29, 2015
  3. Accepted Manuscript published: November 30, 2015 (version 1)
  4. Version of Record published: January 20, 2016 (version 2)

Copyright

© 2015, Bartol et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 27,315
    Page views
  • 2,926
    Downloads
  • 89
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Lihong Zhan et al.
    Research Article Updated

    Microglia are the resident myeloid cells in the central nervous system (CNS). The majority of microglia rely on CSF1R signaling for survival. However, a small subset of microglia in mouse brains can survive without CSF1R signaling and reestablish the microglial homeostatic population after CSF1R signaling returns. Using single-cell transcriptomic analysis, we characterized the heterogeneous microglial populations under CSF1R inhibition, including microglia with reduced homeostatic markers and elevated markers of inflammatory chemokines and proliferation. Importantly, MAC2/Lgals3 was upregulated under CSF1R inhibition, and shared striking similarities with microglial progenitors in the yolk sac and immature microglia in early embryos. Lineage-tracing studies revealed that these MAC2+ cells were of microglial origin. MAC2+ microglia were also present in non-treated adult mouse brains and exhibited immature transcriptomic signatures indistinguishable from those that survived CSF1R inhibition, supporting the notion that MAC2+ progenitor-like cells are present among adult microglia.

    1. Developmental Biology
    2. Neuroscience
    Yasmine Cantaut-Belarif et al.
    Research Article Updated

    The cerebrospinal fluid (CSF) contains an extracellular thread conserved in vertebrates, the Reissner fiber, which controls body axis morphogenesis in the zebrafish embryo. Yet, the signaling cascade originating from this fiber to ensure body axis straightening is not understood. Here, we explore the functional link between the Reissner fiber and undifferentiated spinal neurons contacting the CSF (CSF-cNs). First, we show that the Reissner fiber is required in vivo for the expression of urp2, a neuropeptide expressed in CSF-cNs. We show that the Reissner fiber is also required for embryonic calcium transients in these spinal neurons. Finally, we study how local adrenergic activation can substitute for the Reissner fiber-signaling pathway to CSF-cNs and rescue body axis morphogenesis. Our results show that the Reissner fiber acts on CSF-cNs and thereby contributes to establish body axis morphogenesis, and suggest it does so by controlling the availability of a chemical signal in the CSF.