An aspartyl protease defines a novel pathway for export of Toxoplasma proteins into the host cell

  1. Michael J Coffey
  2. Brad E Sleebs
  3. Alessandro D Uboldi
  4. Alexandra L Garnham
  5. Magdalena Franco
  6. Nicole D Marino
  7. Michael W Panas
  8. David JP Ferguson
  9. Marta Enciso
  10. Matthew T O'Neill
  11. Sash Lopaticki
  12. Rebecca J Stewart
  13. Grant Dewson
  14. Gordon K Smyth
  15. Brian J Smith
  16. Seth L Masters
  17. John C Boothroyd
  18. Justin A Boddey
  19. Christopher J Tonkin  Is a corresponding author
  1. The Walter and Eliza Hall Institute of Medical Research, Australia
  2. Stanford University School of Medicine, United States
  3. University of Oxford, United Kingdom
  4. La Trobe University, Australia
  5. Walter and Eliza Hall Institute of Medical Research, Australia

Abstract

Infection by Toxoplasma gondii leads to massive changes to the host cell. Here we identify a novel host cell effector export pathway, which requires the Golgi-resident Aspartyl Protease 5 (ASP5). We demonstrate that ASP5 cleaves a highly constrained amino acid motif that has similarity to the PEXEL-motif of Plasmodium parasites. We show that ASP5 matures substrates at both the N- and C-terminal ends of proteins and also controls trafficking of effectors without this motif. Furthermore, ASP5 controls establishment of the nanotubular network and is required for the efficient recruitment of host mitochondria to the vacuole. Assessment of host gene expression reveals that the ASP5-dependent pathway influences thousands of the transcriptional changes that Toxoplasma imparts on its host cell. All these changes result in attenuation of virulence of Δasp5 tachyzoites in vivo. This work characterizes the first identified machinery required for export of Toxoplasma effectors into the infected host cell.

Article and author information

Author details

  1. Michael J Coffey

    The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  2. Brad E Sleebs

    The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Alessandro D Uboldi

    The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Alexandra L Garnham

    The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Magdalena Franco

    Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Nicole D Marino

    Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Michael W Panas

    Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. David JP Ferguson

    Nuffield Department of Clinical Laboratory Science, University of Oxford, Oxoford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Marta Enciso

    La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  10. Matthew T O'Neill

    The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  11. Sash Lopaticki

    The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  12. Rebecca J Stewart

    The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  13. Grant Dewson

    The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  14. Gordon K Smyth

    The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  15. Brian J Smith

    La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  16. Seth L Masters

    The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  17. John C Boothroyd

    Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Justin A Boddey

    The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  19. Christopher J Tonkin

    Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
    For correspondence
    tonkin@wehi.edu.au
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All animal experiments complied with the regulatory standards of and were approved by the Walter and Eliza Hall Institute Animal Ethics Committees under approval number 2014.019.

Copyright

© 2015, Coffey et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,205
    views
  • 902
    downloads
  • 97
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michael J Coffey
  2. Brad E Sleebs
  3. Alessandro D Uboldi
  4. Alexandra L Garnham
  5. Magdalena Franco
  6. Nicole D Marino
  7. Michael W Panas
  8. David JP Ferguson
  9. Marta Enciso
  10. Matthew T O'Neill
  11. Sash Lopaticki
  12. Rebecca J Stewart
  13. Grant Dewson
  14. Gordon K Smyth
  15. Brian J Smith
  16. Seth L Masters
  17. John C Boothroyd
  18. Justin A Boddey
  19. Christopher J Tonkin
(2015)
An aspartyl protease defines a novel pathway for export of Toxoplasma proteins into the host cell
eLife 4:e10809.
https://doi.org/10.7554/eLife.10809

Share this article

https://doi.org/10.7554/eLife.10809

Further reading

    1. Microbiology and Infectious Disease
    Louise Tzung-Harn Hsieh, Belinda S Hall ... Rachel E Simmonds
    Research Article

    The drivers of tissue necrosis in Mycobacterium ulcerans infection (Buruli ulcer disease) have historically been ascribed solely to the directly cytotoxic action of the diffusible exotoxin, mycolactone. However, its role in the clinically evident vascular component of disease aetiology remains poorly explained. We have now dissected mycolactone’s effects on human primary vascular endothelial cells in vitro. We show that mycolactone-induced changes in endothelial morphology, adhesion, migration, and permeability are dependent on its action at the Sec61 translocon. Unbiased quantitative proteomics identified a profound effect on proteoglycans, driven by rapid loss of type II transmembrane proteins of the Golgi, including enzymes required for glycosaminoglycan (GAG) synthesis, combined with a reduction in the core proteins themselves. Loss of the glycocalyx is likely to be of particular mechanistic importance, since knockdown of galactosyltransferase II (beta-1,3-galactotransferase 6; B3GALT6), the GAG linker-building enzyme, phenocopied the permeability and phenotypic changes induced by mycolactone. Additionally, mycolactone depleted many secreted basement membrane components and microvascular basement membranes were disrupted in vivo during M. ulcerans infection in the mouse model. Remarkably, exogenous addition of laminin-511 reduced endothelial cell rounding, restored cell attachment and reversed the defective migration caused by mycolactone. Hence supplementing mycolactone-depleted extracellular matrix may be a future therapeutic avenue, to improve wound healing rates.

    1. Epidemiology and Global Health
    2. Microbiology and Infectious Disease
    Gillian AM Tarr, Linda Chui ... Tim A McAllister
    Research Article

    Several areas of the world suffer a notably high incidence of Shiga toxin-producing Escherichia coli. To assess the impact of persistent cross-species transmission systems on the epidemiology of E. coli O157:H7 in Alberta, Canada, we sequenced and assembled E. coli O157:H7 isolates originating from collocated cattle and human populations, 2007–2015. We constructed a timed phylogeny using BEAST2 using a structured coalescent model. We then extended the tree with human isolates through 2019 to assess the long-term disease impact of locally persistent lineages. During 2007–2015, we estimated that 88.5% of human lineages arose from cattle lineages. We identified 11 persistent lineages local to Alberta, which were associated with 38.0% (95% CI 29.3%, 47.3%) of human isolates. During the later period, six locally persistent lineages continued to be associated with human illness, including 74.7% (95% CI 68.3%, 80.3%) of reported cases in 2018 and 2019. Our study identified multiple locally evolving lineages transmitted between cattle and humans persistently associated with E. coli O157:H7 illnesses for up to 13 y. Locally persistent lineages may be a principal cause of the high incidence of E. coli O157:H7 in locations such as Alberta and provide opportunities for focused control efforts.