An aspartyl protease defines a novel pathway for export of Toxoplasma proteins into the host cell

  1. Michael J Coffey
  2. Brad E Sleebs
  3. Alessandro D Uboldi
  4. Alexandra L Garnham
  5. Magdalena Franco
  6. Nicole D Marino
  7. Michael W Panas
  8. David JP Ferguson
  9. Marta Enciso
  10. Matthew T O'Neill
  11. Sash Lopaticki
  12. Rebecca J Stewart
  13. Grant Dewson
  14. Gordon K Smyth
  15. Brian J Smith
  16. Seth L Masters
  17. John C Boothroyd
  18. Justin A Boddey
  19. Christopher J Tonkin  Is a corresponding author
  1. The Walter and Eliza Hall Institute of Medical Research, Australia
  2. Stanford University School of Medicine, United States
  3. University of Oxford, United Kingdom
  4. La Trobe University, Australia
  5. Walter and Eliza Hall Institute of Medical Research, Australia

Abstract

Infection by Toxoplasma gondii leads to massive changes to the host cell. Here we identify a novel host cell effector export pathway, which requires the Golgi-resident Aspartyl Protease 5 (ASP5). We demonstrate that ASP5 cleaves a highly constrained amino acid motif that has similarity to the PEXEL-motif of Plasmodium parasites. We show that ASP5 matures substrates at both the N- and C-terminal ends of proteins and also controls trafficking of effectors without this motif. Furthermore, ASP5 controls establishment of the nanotubular network and is required for the efficient recruitment of host mitochondria to the vacuole. Assessment of host gene expression reveals that the ASP5-dependent pathway influences thousands of the transcriptional changes that Toxoplasma imparts on its host cell. All these changes result in attenuation of virulence of Δasp5 tachyzoites in vivo. This work characterizes the first identified machinery required for export of Toxoplasma effectors into the infected host cell.

Article and author information

Author details

  1. Michael J Coffey

    The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  2. Brad E Sleebs

    The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Alessandro D Uboldi

    The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Alexandra L Garnham

    The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Magdalena Franco

    Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Nicole D Marino

    Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Michael W Panas

    Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. David JP Ferguson

    Nuffield Department of Clinical Laboratory Science, University of Oxford, Oxoford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Marta Enciso

    La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  10. Matthew T O'Neill

    The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  11. Sash Lopaticki

    The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  12. Rebecca J Stewart

    The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  13. Grant Dewson

    The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  14. Gordon K Smyth

    The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  15. Brian J Smith

    La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  16. Seth L Masters

    The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  17. John C Boothroyd

    Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Justin A Boddey

    The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  19. Christopher J Tonkin

    Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
    For correspondence
    tonkin@wehi.edu.au
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All animal experiments complied with the regulatory standards of and were approved by the Walter and Eliza Hall Institute Animal Ethics Committees under approval number 2014.019.

Copyright

© 2015, Coffey et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,173
    views
  • 901
    downloads
  • 97
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michael J Coffey
  2. Brad E Sleebs
  3. Alessandro D Uboldi
  4. Alexandra L Garnham
  5. Magdalena Franco
  6. Nicole D Marino
  7. Michael W Panas
  8. David JP Ferguson
  9. Marta Enciso
  10. Matthew T O'Neill
  11. Sash Lopaticki
  12. Rebecca J Stewart
  13. Grant Dewson
  14. Gordon K Smyth
  15. Brian J Smith
  16. Seth L Masters
  17. John C Boothroyd
  18. Justin A Boddey
  19. Christopher J Tonkin
(2015)
An aspartyl protease defines a novel pathway for export of Toxoplasma proteins into the host cell
eLife 4:e10809.
https://doi.org/10.7554/eLife.10809

Share this article

https://doi.org/10.7554/eLife.10809

Further reading

    1. Cell Biology
    2. Microbiology and Infectious Disease
    Clément Mazeaud, Stefan Pfister ... Laurent Chatel-Chaix
    Research Article

    Zika virus (ZIKV) infection causes significant human disease that, with no approved treatment or vaccine, constitutes a major public health concern. Its life cycle entirely relies on the cytoplasmic fate of the viral RNA genome (vRNA) through a fine-tuned equilibrium between vRNA translation, replication, and packaging into new virions, all within virus-induced replication organelles (vROs). In this study, with an RNA interference (RNAi) mini-screening and subsequent functional characterization, we have identified insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) as a new host dependency factor that regulates vRNA synthesis. In infected cells, IGF2BP2 associates with viral NS5 polymerase and redistributes to the perinuclear viral replication compartment. Combined fluorescence in situ hybridization-based confocal imaging, in vitro binding assays, and immunoprecipitation coupled to RT-qPCR showed that IGF2BP2 directly interacts with ZIKV vRNA 3’ nontranslated region. Using ZIKV sub-genomic replicons and a replication-independent vRO induction system, we demonstrated that IGF2BP2 knockdown impairs de novo vRO biogenesis and, consistently, vRNA synthesis. Finally, the analysis of immunopurified IGF2BP2 complex using quantitative mass spectrometry and RT-qPCR revealed that ZIKV infection alters the protein and RNA interactomes of IGF2BP2. Altogether, our data support that ZIKV hijacks and remodels the IGF2BP2 ribonucleoprotein complex to regulate vRO biogenesis and vRNA neosynthesis.

    1. Genetics and Genomics
    2. Microbiology and Infectious Disease
    Dániel Molnár, Éva Viola Surányi ... Judit Toth
    Research Article

    The sustained success of Mycobacterium tuberculosis as a pathogen arises from its ability to persist within macrophages for extended periods and its limited responsiveness to antibiotics. Furthermore, the high incidence of resistance to the few available antituberculosis drugs is a significant concern, especially since the driving forces of the emergence of drug resistance are not clear. Drug-resistant strains of Mycobacterium tuberculosis can emerge through de novo mutations, however, mycobacterial mutation rates are low. To unravel the effects of antibiotic pressure on genome stability, we determined the genetic variability, phenotypic tolerance, DNA repair system activation, and dNTP pool upon treatment with current antibiotics using Mycobacterium smegmatis. Whole-genome sequencing revealed no significant increase in mutation rates after prolonged exposure to first-line antibiotics. However, the phenotypic fluctuation assay indicated rapid adaptation to antibiotics mediated by non-genetic factors. The upregulation of DNA repair genes, measured using qPCR, suggests that genomic integrity may be maintained through the activation of specific DNA repair pathways. Our results, indicating that antibiotic exposure does not result in de novo adaptive mutagenesis under laboratory conditions, do not lend support to the model suggesting antibiotic resistance development through drug pressure-induced microevolution.