Two classes of amine/glutamate multi-transmitter neurons innervate Drosophila internal male reproductive organs

  1. Marta Chaverra
  2. John Paul Toney
  3. Lizetta D Dardenne-Ankringa
  4. Jace Tolleson Knee
  5. Ann R Morris
  6. Joseph B Wadhams
  7. Sarah J Certel
  8. R Steven Stowers  Is a corresponding author
  1. Montana State University, Department of Microbiology and Cell Biology, United States
  2. The University of Montana, Division of Biological Sciences, United States
10 figures, 9 videos, 2 tables and 2 additional files

Figures

The Drosophila male reproductive system.

(A) Schematic diagram showing paired testes (uncolored), SVs (green), and AGs (purple), Sph (red), ED (gray), and EB (uncolored). Modified version of Figure 38A page 508 (Demerec, 1950). Used with kind permission from Cold Spring Harbor Laboratory (CSHL) Press. (B) Actual male reproductive system. Te-testes, SV-seminal vesicle, AG-accessory gland, Sph-sphincter, ED-ejaculatory duct, EB-ejaculatory bulb. Scale bar: 200 μm.

Gal4 and Split-GAL4 expression patterns in the Drosophila male reproductive system.

(A) Tdc2-GAL4; (B) TRH-GAL4; (C) vGlut-GAL4; (D) Tdc2-AD ∩ vGlut-GAL4-DBD; (E) vGlut-AD Ç Tdc2-GAL4-DBD; (F) TRH-AD Ç vGlut-GAL4-DBD; (G) vGlut-AD Ç TRH-GAL4-DBD; (H) Tdc2-AD Ç TRH-GAL4-DBD. Scale bar: 200 μm.

Figure 3 with 3 supplements
Expression of TRH-GAL4 and Tdc2-LexA in the Drosophila male reproductive system.

(A, D, G, J, M, P) TRH-GAL4, UAS-6XGFP; (B, E, H, K, N, Q) Tdc2-LexA, LexAop-6XmCherry. (C, F, I, L, O, R) overlay. Scale bars: O-50 μm; R-10 μm.

Figure 3—figure supplement 1
Expression of vGlut-LexA and TRH-GAL4 in the Drosophila male reproductive system.

(A, D, G, J, M, P) vGlut-LexA, LexAop-6XmCherry; (B, E, H, K, N, Q) TRH-GAL4, UAS-6XGFP (C, F, I, L, O, R) overlay. Scale bars: O-50 μm; R-10 μm.

Figure 3—figure supplement 2
Expression of vGlut-LexA and Tdc2-GAL4 in the Drosophila male reproductive system.

(A, D, G, J, M, P) vGlut-LexA, LexAop-6XmCherry; (B, E, H, K, N, Q) Tdc2-GAL4, UAS-6XGFP (C, F, I, L, O, R) overlay. Scale bars: O-50 μm; R-10 μm.

Figure 3—figure supplement 3
Fruitless and Doublesex expression in the Drosophila male reproductive system.

(A) fru-GAL4, UAS-6XGFP; (B) vGlut-LexA, LexAop-6XmCherry; (C) overlay; (D) Tdc2-AD ∩ dsx-GAL4-DBD; (E) TRH-AD ∩ dsx-GAL4-DBD. Scale bar: 200 μm.

Figure 4 with 4 supplements
Expression of vGlut, TβH-GFP, Tdc2, and 5-HT in the Drosophila male reproductive system.

(A) vGlut-40XV5; (B) TβH-GFP; (C) 5-HT; (D) vGlut-40XV5, TβH-GFP overlay; (E) vGlut-40XV5, 5-HT overlay; (F) TβH-GFP, 5-HT overlay; (G) vGlut-40XV5; (H) Tdc2; (I) 5-HT; (J) vGlut-40XV5, Tdc2 overlay; (K) vGlut-40XV5, 5-HT overlay; (L) Tdc2, 5-HT overlay. Scale bar: 200 μm.

Figure 4—figure supplement 1
Expression of vGlut, TβH-GFP, Tdc2, and 5-HT in the seminal vesicle (SV) of the Drosophila male reproductive system.

(A, G) vGlut-40XV5; (B, H) TβH-GFP; (C, I) 5-HT; (D, J) vGlut-40XV5, TβH-GFP overlay; (E, K) vGlut-40XV5, 5-HT overlay; (F, L) TβH-GFP, 5-HT overlay; (M, S) vGlut-40XV5; (N, T) Tdc2; (O, U) 5-HT; (P, V) vGlut-40XV5, Tdc2 overlay; (Q, W) vGlut-40XV5, 5-HT overlay; (R, X) Tdc2, 5-HT overlay. Scale bars: R-50 μm; X-10 μm.

Figure 4—figure supplement 2
Expression of vGlut, TβH-GFP, Tdc2, and 5-HT in the ejaculatory duct (ED) of the Drosophila male reproductive system.

(A, G) vGlut-40XV5; (B, H) TβH-GFP; (C, I) 5-HT; (D, J) vGlut-40XV5, TβH-GFP overlay; (E, K) vGlut-40XV5, 5-HT overlay; (F, L) TβH-GFP, 5-HT overlay; (M, S) vGlut-40XV5; (N, T) Tdc2; (O, U) 5-HT; (P, V) vGlut-40XV5, Tdc2 overlay; (Q, W) vGlut-40XV5, 5-HT overlay; (R, X) Tdc2, 5-HT overlay. Scale bars: R-50 μm; X-10 μm.

Figure 4—figure supplement 3
Expression of vGlut, TβH-GFP, Tdc2, and 5-HT in the accessory gland (AG) of the Drosophila male reproductive system.

(A, G) vGlut-40XV5; (B, H) TβH-GFP; (C, I) 5-HT; (D, J) vGlut-40XV5, TβH-GFP overlay; (E, K) vGlut-40XV5, 5-HT overlay; (F, L) TβH-GFP, 5-HT overlay; (M, S) vGlut-40XV5; (N, T) Tdc2; (O, U) 5-HT; (P, V) vGlut-40XV5, Tdc2 overlay; (Q, W) vGlut-40XV5, 5-HT overlay; (R, X) Tdc2, 5-HT overlay. Scale bars: R-50 μm; X-10 μm.

Figure 4—figure supplement 4
Expression of vGlut, TβH-GFP, and 5-HT at the junction of the seminal vesicle (SV) and accessory glands (AGs) with the ejaculatory duct (ED) of the Drosophila male reproductive system.

(A) vGlut-40XV5; (B) TβH-GFP; (C) 5-HT; (D) vGlut-40XV5, TβH-GFP overlay; (E) vGlut-40XV5, 5-HT overlay; (F) TβH-GFP, 5-HT overlay. Scale bar: 50 μm.

Figure 5 with 5 supplements
Co-conditional expression of vGlut-40XMYC and 6XV5-vMAT in the seminal vesicle (SV) of serotonergic (TRH) or octopaminergic (Tdc2) neurons of the Drosophila male reproductive system.

(A–D) 63X. (A) vGlut-40XMYC; (B) 6XV5-vMAT; (C) Tdc2; (D) TRH >CD8-mCherry. (E–L) 63X zoom 4X. (E) vGlut-40XMYC; (F) 6XV5-vMAT; (G) Tdc2; (H) TRH >CD8-mCherry; (I) vGlut-40XMYC, 6XV5-vMAT overlay; (J) vGlut-40XMYC, 6XV5-vMAT, Tdc2 overlay; (K) 6XV5-vMAT, Tdc2 overlay; (L) Tdc2, TRH >CD8-mCherry overlay. (M–P) 63X. (M) vGlut-40XMYC; (N) 6XV5-vMAT; (O) 5-HT; (P) Tdc2>CD8-mCherry. (Q–X) 63X zoom 4X. (Q) vGlut-40XMYC; (R) 6XV5-vMAT; (S) 5-HT; (T) Tdc2>CD8-mCherry; (U) vGlut-40XMYC, 6XV5-vMAT overlay; (V) vGlut-40XMYC, 6XV5-vMAT, 5-HT overlay; (W) 6XV5-vMAT, 5-HT overlay; (X) 5-HT, Tdc2>CD8-mCherry overlay. Scale bars: P-50 μm; X-10 μm.

Figure 5—figure supplement 1
Co-conditional expression of vGlut-40XMYC and 6XV5-vMAT in the ejaculatory duct (ED) of serotonergic (TRH) or octopaminergic (Tdc2) neurons of the Drosophila male reproductive system.

(A–D) 63X. (A) vGlut-40XMYC; (B) 6XV5-vMAT; (C) Tdc2; (D) TRH >CD8-mCherry. (E–L) 63X zoom 4X. (E) vGlut-40XMYC; (F) 6XV5-vMAT; (G) Tdc2; (H) TRH >CD8-mCherry; (I) vGlut-40XMYC, 6XV5-vMAT overlay; (J) vGlut-40XMYC, 6XV5-vMAT, Tdc2 overlay; (K) 6XV5-vMAT, Tdc2 overlay; (L) Tdc2, TRH >CD8-mCherry overlay. (M–P) 63X. (M) vGlut-40XMYC; (N) 6XV5-vMAT; (O) 5-HT; (P) Tdc2>CD8-mCherry. (Q–X) 63X zoom 4X. (Q) vGlut-40XMYC; (R) 6XV5-vMAT; (S) 5-HT; (T) Tdc2>CD8-mCherry; (U) vGlut-40XMYC, 6XV5-vMAT overlay; (V) vGlut-40XMYC, 6XV5-vMAT, 5-HT overlay; (W) 6XV5-vMAT, 5-HT overlay; (X) Tdc2, Tdc2>CD8-mCherry overlay. Scale bars: P-50 μm; X-10 μm.

Figure 5—figure supplement 2
Co-conditional expression of vGlut-40XMYC and 6XV5-vMAT in the accessory gland (AG) of serotonergic (TRH) or octopaminergic (Tdc2) neurons of the Drosophila male reproductive system.

(A–D) 63X. (A) vGlut-40XMYC; (B) 6XV5-vMAT; (C) Tdc2; (D) TRH >CD8-mCherry. (E–L) 63X zoom 4X. (E) vGlut-40XMYC; (F) 6XV5-vMAT; (G) Tdc2; (H) TRH >CD8-mCherry; (I) vGlut-40XMYC, 6XV5-vMAT overlay; (J) vGlut-40XMYC, 6XV5-vMAT, Tdc2 overlay; (K) 6XV5-vMAT, Tdc2 overlay; (L) Tdc2, TRH >CD8-mCherry overlay. (M–P) 63X. (M) vGlut-40XMYC; (N) 6XV5-vMAT; (O) 5-HT; (P) Tdc2>CD8-mCherry. (Q–X) 63X zoom 4X. (Q) vGlut-40XMYC; (R) 6XV5-vMAT; (S) 5-HT; (T) Tdc2>CD8-mCherry; (U) vGlut-40XMYC, 6XV5-vMAT overlay; (V) vGlut-40XMYC, 6XV5-vMAT, 5-HT overlay; (W) 6XV5-vMAT, 5-HT overlay; (X) Tdc2, Tdc2>CD8-mCherry overlay. Scale bars: P-50 μm; X-10 μm.

Figure 5—figure supplement 3
Co-conditional expression of vGlut-40XMYC and 6XV5-vMAT in serotonergic neurons of the Drosophila ejaculatory duct (ED) using expansion microscopy.

(A, D) 6XV5-vMAT; (B, E) vGlut-40XMYC; (C, F) overlay. (A–C) 6XV5-vMAT and vGlut-40XMYC expression above the threshold intensity values. (D–F) Complete 6XV5-vMAT and vGlut-40XMYC expression. (G) Mander’s plot of 6XV5-vMAT and vGlut-40XMYC. Vertical line indicates intensity threshold value for 6XV5-vMAT. Horizontal line indicates intensity threshold value for vGlut-40XMYC. (H) Mander’s coefficients. Grayscale signal in AC denotes the CD8-mCherry plasma membrane marker. Scale bars: 500 nm. Scale bars have been corrected by 10X to reflect the empirically determined 10.5X expansion factor.

Figure 5—figure supplement 4
Co-conditional expression of vGlut-40XMYC and 6XV5-vMAT in octopaminergic neurons of the Drosophila ejaculatory duct (ED) using expansion microscopy.

(A, D) 6XV5-vMAT; (B, E) vGlut-40XMYC; (C, F) overlay. (A–C) 6XV5-vMAT and vGlut-40XMYC expression above the threshold intensity values. (D–F) Complete 6XV5-vMAT and vGlut-40XMYC expression. (G) Mander’s plot of 6XV5-vMAT and vGlut-40XMYC. Vertical line indicates intensity threshold value for 6XV5-vMAT. Horizontal line indicates intensity threshold value for vGlut-40XMYC. (H) Mander’s coefficients. Grayscale signal in A-C denotes the CD8-mCherry plasma membrane marker. Scale bars: 500 nm. Scale bars have been corrected by 10X to reflect the empirically determined 10.5X expansion factor.

Figure 5—figure supplement 5
Nuclei of unexpanded and expanded ejaculatory ducts (EDs).

(A) DAPI-stained nuclei from an unexpanded ED. (B) DAPI-stained nuclei of an expanded ED. (C) Bar graph plot of nuclei area (mean ± SE-black bars). For the experiment shown, the calculated expansion factor (post-ExM nuclear area/pre-ExM nuclear area) was 10.47, p-value <0.00001. Fij/ImageJ open-source software was used to segment images and calculate nuclear area. Scale bars: 25 μm.

Figure 6 with 5 supplements
Expression of the synaptic vesicle marker Synapsin in combination with vGlut-40XMYC and 6XV5-vMAT in the seminal vesicle (SV), ejaculatory duct (ED), and accessory gland (AG) of the Drosophila male reproductive system.

(A–I) SV. (A) vGlut-40XMYC; (B) 6XV5-vMAT; (C) Synapsin; (D) vGlut-40XMYC; (E) 6XV5-vMAT; (F) Synapsin; (G) vGlut-40XMYC, 6XV5-vMAT overlay; (H) vGlut-40XMYC, Synapsin overlay; (I) 6XV5-vMAT, Synapsin overlay. (A’-I’) ED. (A’) vGlut-40XMYC; (B’) 6XV5-vMAT; (C’) Synapsin; (D’) vGlut-40XMYC; (E’) 6XV5-vMAT; (F’) Synapsin; (G’) vGlut-40XMYC, 6XV5-vMAT overlay; (H’) vGlut-40XMYC, Synapsin overlay; (I’) 6XV5-vMAT, Synapsin overlay. (A’’-I’’) AG. (A’’) vGlut-40XMYC; (B’’) 6XV5-vMAT; (C’’) Synapsin; (D’’) vGlut-40XMYC; (E’’) 6XV5-vMAT; (F’’) Synapsin; (G’’) vGlut-40XMYC, 6XV5-vMAT overlay; (H’’) vGlut-40XMYC, Synapsin overlay; (I’’) 6XV5-vMAT, Synapsin overlay. Scale bars: C’’–50 μm; I’’–10 μm.

Figure 6—figure supplement 1
Expression of the active zone marker Brp in combination with vGlut-40XMYC and 6XV5-vMAT in the seminal vesicle (SV), ejaculatory duct (ED), and accessory gland (AG) of the Drosophila male reproductive system.

(A–H) SV. (A) vGlut-40XMYC; (B) 6XV5-vMAT; (C) Brp; (D) 6XV5-vMAT, Brp overlay; (E) vGlut-40XMYC; (F) 6XV5-vMAT; (G) Brp; (H) 6XV5-vMAT, Brp overlay. (I–P) ED. (I) vGlut-40XMYC; (J) 6XV5-vMAT; (K) Brp; (L) 6XV5-vMAT, Brp; (M) vGlut-40XMYC; (N) 6XV5-vMAT; (O) Brp; (P) 6XV5-vMAT, Brp overlay. (I–P) AG. (Q) vGlut-40XMYC; (R) 6XV5-vMAT; (S) Brp; (T) 6XV5-vMAT, Brp; (U) vGlut-40XMYC; (V) 6XV5-vMAT; (W) Brp; (X) 6XV5-vMAT, Brp overlay. Scale bars: P-50 μm; X-10 μm.

Figure 6—figure supplement 2
Expression of the post-synaptic density marker Dlg in combination with vGlut-40XMYC and 6XV5-vMAT in the seminal vesicle (SV), ejaculatory duct (ED), and accessory gland (AG) of the Drosophila male reproductive system.

(A–D) Complete reproductive system. (A) vGlut-40XMYC; (B) 6XV5-vMAT; (C) Dlg; (D) 6XV5-vMAT, Dlg overlay; (E–L) SV. (E) vGlut-40XMYC; (F) 6XV5-vMAT; (G) Dlg; (H) 6XV5-vMAT, Dlg overlay; (I) vGlut-40XMYC; (J) 6XV5-vMAT; (G) Dlg; (H) 6XV5-vMAT, Dlg overlay. (I–P) ED. (I) vGlut-40XMYC; (K) 6XV5-vMAT; (L) Dlg; (M–P) ED muscle surface. (M) vGlut-40XMYC; (N) 6XV5-vMAT; (O) Dlg; (P) 6XV5-vMAT, Dlg overlay (Q) Dlg in the ED epithelial cells. (R–U) AG muscle surface. (R) vGlut-40XMYC; (S) 6XV5-vMAT; (T) Dlg; (U) 6XV5-vMAT, Dlg overlay; (V) Dlg in AG epithelial cells. Scale bars: D-200 μm; H-50 μm; V-10 μm.

Figure 6—figure supplement 3
Expression of the large core dense vesicle marker IA2-GFP in combination with vGlut-40XMYC and 6XV5-vMAT in the seminal vesicle (SV) of the Drosophila male reproductive system.

(A–C) Complete reproductive system. (A) vGlut-40XMYC; (B) 6XV5-vMAT; (C) IA2-GFP; (D–O) SV. (D, J) vGlut-40XMYC; (E, K) 6XV5-vMAT; (F, L) IA2-GFP; (G, M) vGlut-40XMYC, 6XV5-vMAT overlay; (H, N) vGlut-40XMYC, IA2-GFP overlay; (I, O) 6XV5-vMAT, IA2 overlay. Scale bars: C-200 μm; F-50 μm; O-10 μm.

Figure 6—figure supplement 4
Expression of the large core dense vesicle marker IA2-GFP in combination with vGlut-40XMYC and 6XV5-vMAT in the ejaculatory duct (ED) and accessory gland s (AGs) of the Drosophila male reproductive system.

(A–L) ED. (A, G) vGlut-40XMYC; (B, H) 6XV5-vMAT; (C, I) IA2-GFP; (D, J) vGlut-40XMYC, 6XV5-vMAT overlay; (E, K) vGlut-40XMYC, IA2-GFP overlay; (F, L) 6XV5-vMAT, IA2 overlay. (M–X) AG. (M, S) vGlut-40XMYC; (N, T) 6XV5-vMAT; (O, U) IA2-GFP; (P, V) vGlut-40XMYC, 6XV5-vMAT overlay; (Q, W) vGlut-40XMYC, IA2-GFP overlay; (R, X) 6XV5-vMAT, IA2 overlay. Scale bars: R-50 μm; X-10 μm.

Figure 6—figure supplement 5
Expression of vGlut-40XMYC, 6XV5-vMAT, 7XMYC-vAChT, and 9XV5-vGAT in the seminal vesicle (SV), ejaculatory duct (ED), and accessory gland (AG) of the Drosophila male reproductive system.

(A–D) SV. (A) vGlut-40XV5; (B) 6XV5-vMAT; (C) 7XMYC-vAChT; (D) 9XV5-vGAT. (E–H) ED. (E) vGlut-40XV5; (F) 6XV5-vMAT; (G) 7XMYC-vAChT; (H) 9XV5-vGAT. (I–L) AG. (I) vGlut-40XV5; (J) 6XV5-vMAT; (K) 7XMYC-vAChT; (L) 9XV5-vGAT. Scale bar: 50 μm.

Figure 7 with 2 supplements
Glutamate receptor GAL4 expression patterns in Drosophila male reproductive system.

(A) GluRIIB; (B) GluRIIC. Scale bar: 200 μm.

Figure 7—figure supplement 1
Octopamine (OA) receptor GAL4 expression patterns in Drosophila male reproductive system.

(A) OAMB; (B) OAα2R; (C) Oct-TyrR; (D) OAβ1R; (E) OAβ2R; (F) OAβ3R. Scale bar: 200 μm.

Figure 7—figure supplement 2
5-HT receptor GAL4 expression patterns in Drosophila male reproductive system.

(A) 5-HT1A; (B) 5-HT2A; (C) 5-HT1B; (D) 5-HT2B; (E) 5-HT7. Scale bar: 200 μm.

Figure 8 with 10 supplements
GluRIIA-GFP expression in the seminal vesicle (SV), ejaculatory duct (ED), and accessory gland (AG) of the Drosophila male reproductive system.

(A–F) SV. (A, D) vGlut-40XV5; (B, E) GluRIIA-GFP; (C, F) vGlut-40XV5, GluRIIA-GFP overlay. (G–L) ED. (G, J) vGlut-40XV5; (H, K) GluRIIA-GFP; (I, L) vGlut-40XV5, GluRIIA-GFP overlay. (M–R) AG. (M, P) vGlut-40XV5; (N, Q) GluRIIA-GFP; (O, R) vGlut-40XV5, GluRIIA-GFP overlay. Scale bars: O-50 μm; R-10 μm.

Figure 8—figure supplement 1
OAMB expression in the Drosophila male reproductive system.

(A–C) Complete male reproductive system. (A) OAMB-10XV5; (B) Syn; (C) OAMB-10XV5, Syn overlay. (D–I) SV. (D, G) OAMB-10XV5; (E, H) Syn; (F, I) OAMB-10XV5, Syn overlay. (J–R) ED. (J–L) muscle surface. (J) OAMB-10XV5; (K) Syn; (L) OAMB-10XV5, Syn overlay. (M–O) muscles and epithelial layers. (M) OAMB-10XV5; (N) Syn; (O) OAMB-10XV5, Syn overlay. (P–R) epithelial layer. (P) OAMB-10XV5; (Q) Syn; (R) OAMB-10XV5, Syn overlay. Scale bars: C-200 μm; F, O-50 μm; I, L, R-10 μm.

Figure 8—figure supplement 2
OAMB expression in the Drosophila male reproductive system.

(A–C) AG. (A) OAMB-10XV5; (B) Syn; (C) OAMB-10XV5, Syn overlay. (D–F) Epithelial layer of AG. (D) OAMB-10XV5; (E) Syn; (F) OAMB-10XV5, Syn overlay. (G–I) Muscle layer of AG. (G) OAMB-10XV5; (H) Syn; (I) OAMB-10XV5, Syn overlay. (J–L) Ejaculatory bulb. (J) OAMB-10XV5; (K) Syn; (L) OAMB-10XV5, Syn overlay. (M–O) Muscle layer of ejaculatory bulb. (M) OAMB-10XV5; (N) Syn; (O) OAMB-10XV5, Syn overlay. (P–Q) Epithelial layer of ejaculatory bulb. (P) OAMB-10XV5; (Q) Syn; (R) OAMB-10XV5, Syn overlay. Scale bars: C, L-50 μm; F, I, R-10 μm.

Figure 8—figure supplement 3
OAα2R-20XV5 expression in the Drosophila male reproductive system.

(A–C) Complete male reproductive system. (A) OAα2R-20XV5; (B) Syn; (C) OAα2R-20XV5, Syn overlay. (D–I) SV. (D, G) OAα2R-20XV5; (E, H) Syn; (F, I) OAα2R-20XV5, Syn overlay. Cross-section of SV. (J) OAα2R-20XV5: (K) Syn; (L) OAα2R-20XV5, Syn overlay. (M–R) AG. (M, P) OAα2R-20XV5; (N, Q) Syn; (O, R) OAα2R-20XV5, Syn overlay. Scale bars: C-200 μm; O-50 μm; R-10 μm.

Figure 8—figure supplement 4
OAα2R-20XV5 expression in the Drosophila male reproductive system.

(A–C) SV/ED junction. (A, D) OAα2R-20XV5; (B, E) Syn; (C, F) OAα2R-20XV5, Syn overlay. (G–L) Proximal anterior ED. (G, J) OAα2R-20XV5; (H, K) Syn; (I, L) OAα2R-20XV5, Syn overlay. (M–U) Distal anterior ED. (M, P, S) OAα2R-20XV5; (N, Q, T) Syn; (O, R, U) OAα2R-20XV5, Syn overlay. Scale bars: C, I, O-50 μm; F-25 μm; L, U-10 μm.

Figure 8—figure supplement 5
OAβ2R-40XV5 expression in the Drosophila male reproductive system.

(A–C) Complete male reproductive system. (A) OAβ2R-40XV5; (B) Syn; (C) OAβ2R-40XV5, Syn overlay. (D–I) seminal vesicle (SV). (D, G) OAβ2R; (E, H) Syn; (F, I) OAβ2R-40XV5, Syn overlay. (J–L) Cross section of SV. (J) OAβ2R-40XV5; (K) Syn; (L) OAβ2R-40XV5, Syn overlay. (M–R) ED. (M, P) OAβ2R; (N, Q) Syn; (O, R) OAβ2R-40XV5, Syn overlay. Scale bars: C-200 μm; O-50 μm; R-10 μm.

Figure 8—figure supplement 6
OAβ2R-40XV5 expression in the Drosophila male reproductive system.

(A–C) Junction of seminal vesicle (SV) and ejaculatory duct (ED). (A) OAβ2R-40XV5; (B) Syn; (C) OAβ2R-40XV5, Syn overlay. (D–F) Cross section of ED. (D) OAβ2R-40XV5; (E) Syn; (F) OAβ2R-40XV5, Syn overlay. (G–I) Junction of SV and ED. (G) OAβ2R-40XV5; (H) Syn; (I) OAβ2R-40XV5, Syn overlay. (J–L) Distal SV. (J) OAβ2R-40XV5; (E) Syn; (F) OAβ2R-40XV5, Syn overlay. (M–O) Cross section of distal SV. (M) OAβ2R-40XV5; (N) Syn; (O) OAβ2R-40XV5, Syn overlay. Scale bars: C, I-50 μm; O-10 μm.

Figure 8—figure supplement 7
OAβ2R-40XV5 expression in the Drosophila male reproductive system.

(A–C) Distal anterior ejaculatory duct (ED). (A) OAβ2R-40XV5; (B) Syn; (C) OAβ2R-40XV5, Syn overlay. (D–F) Cross section of distal anterior ED. (D) OAβ2R-40XV5; (E) Syn; (F) OAβ2R-40XV5, Syn overlay. (G–L) AG. (G, J) OAβ2R-40XV5; (H, K) Syn; (I, L) OAβ2R-40XV5, Syn overlay. (M–O) Ejaculatory bulb. (M, O) OAβ2R-40XV5; (N, Q) Syn; (O, R) OAβ2R-40XV5, Syn overlay. Scale bars: O-50 μm; R-10 μm.

Figure 8—figure supplement 8
5-HT7-20XV5 expression in the Drosophila male reproductive system.

(A–C) Complete male reproductive system. (A) 5-HT7-20XV5; (B) Syn; (C) 5-HT7-20XV5, Syn overlay. (D–I) SV. (D, G) 5-HT7-20XV5; (E, H) Syn; (F, I) 5-HT7-20XV5, Syn overlay. (J–O) ED. (J, M) 5-HT7-20XV5; (K, N) Syn; (L, O) 5-HT7-20XV5, Syn overlay. Scale bars: C-200 μm; L-50 μm; O-10 μm.

Figure 8—figure supplement 9
5-HT7-20XV5 expression in the Drosophila male reproductive system.

(A–I) Seminal vesicle (SV). (A, D, G) 5-HT7-20XV5; (B, E, H) Syn; (C, F, I) 5-HT7-20XV5, Syn overlay. (J–L) Cross section of SV. (J) 5-HT7-20XV5; (K) Syn; (L) 5-HT7-20XV5, Syn overlay. (M–O) SV terminus. (M) 5-HT7-20XV5; (N) Syn; (O) 5-HT7-20XV5, Syn overlay. (P–R) SV/ED junction. (P) 5-HT7-20XV5; (Q) Syn; (R) 5-HT7-20XV5, Syn overlay. Scale bars: C, G-50 μm; F, O-10 μm; R-25 μm.

Figure 8—figure supplement 10
5-HT7-20XV5 expression in the Drosophila male reproductive system.

(A–C) Accessory gland (AG). (A) 5-HT7-20XV5; (B) Syn; (C) 5-HT7-20XV5, Syn overlay. (D–F) Epithelial layer of AG. (D) 5-HT7-20XV5; (E) Syn; (F) 5-HT7-20XV5, Syn overlay. (G–I) Cross-section of epithelial layer of AG. (G) 5-HT7-20XV5; (H) Syn; (I) 5-HT7-20XV5, Syn overlay. (J–L) Muscle layer of AG. (J) 5-HT7-20XV5; (K) Syn; (L) 5-HT7-20XV5, Syn overlay. (M–O) Ejaculatory bulb. (M) 5-HT7-20XV5.; (N) Syn; (O) 5-HT7-20XV5, Syn overlay. Scale bars: C, O-50 μm; L-10 μm.

Figure 9 with 3 supplements
Low-resolution images of nuclear expression of VT019028-GAL4-DBD in combination with TRH-AD and AbdB-AD in Drosophila male and female adult nervous system relative to 5-HT and Tdc2.

(A–D) nuclear expression using HIS2A-GFP marker. (A) male VT019028-GAL4-DBD/TRH-AD; (B) female VT019028-GAL4-DBD/TRH-AD; (C) male VT019028-GAL4-DBD/AbdB-AD; (B) female VT019028-GAL4-DBD/AbdB-AD. (E–H) 5-HT expression. (E) male VT019028-GAL4-DBD/TRH-AD; (F) female VT019028-GAL4-DBD/TRH-AD; (G) male VT019028-GAL4-DBD/AbdB-AD; (H) female VT019028-GAL4-DBD/AbdB-AD. Tdc2 expression. (I) male VT019028-GAL4-DBD/TRH-AD; (J) female VT019028-GAL4-DBD/TRH-AD; (K) male VT019028-GAL4-DBD/AbdB-AD; (L) female VT019028-GAL4-DBD/AbdB-AD. Scale bar: 200 μm.

Figure 9—figure supplement 1
High-resolution images of nuclear expression of VT019028-GAL4-DBD in combination with TRH-AD in posterior ventral nerve cord of Drosophila male adult nervous system relative to 5-HT and Tdc2.

(A–E) Dorsal view of complete stack of confocal images. (A) His2A-GFP; (B) 5-HT; (C) Tdc2; (D) His2A-GFP, 5-HT overlay; (E) His2A-GFP, Tdc2 overlay. (F) Ventral view of His2A-GFP/5-HT overlay of subset of slices containing the dorsal cluster of 5-HT neurons; (G–K) Dorsal view of subset of slices containing the dorsal cluster of 5-HT neurons. (G) His2A-GFP; (H) 5-HT; (I) Tdc2; (J) His2A-GFP, 5-HT overlay; (K) His2A-GFP, Tdc2 overlay. (L–P) Dorsal view of subset of slices containing the ventral cluster of 5-HT neurons. (L) His2A-GFP; (M) 5-HT; (N) Tdc2; (O) His2A-GFP, 5-HT overlay; (P) His2A-GFP, Tdc2 overlay. Scale bar: 50 μm.

Figure 9—figure supplement 2
High-resolution images of nuclear expression of VT019028-GAL4-DBD in combination with TRH-AD in posterior ventral nerve cord of Drosophila male adult nervous system relative to 5-HT and Tdc2.

(A–E) Dorsal view of complete stack of confocal images. (A) His2A-GFP; (B) 5-HT; (C) Tdc2; (D) His2A-GFP, 5-HT overlay; (E) His2A-GFP, Tdc2 overlay. (F) Ventral view of His2A-GFP/5-HT overlay of subset of slices containing the dorsal cluster of 5-HT neurons; (G–K) Dorsal view of subset of slices containing the dorsal cluster of 5-HT neurons. (G) His2A-GFP; (H) 5-HT; (I) Tdc2; (J) His2A-GFP, 5-HT overlay; (K) His2A-GFP, Tdc2 overlay. (L–P) Dorsal view of subset of slices containing the ventral cluster of 5-HT neurons. (L) His2A-GFP; (M) 5-HT; (N) Tdc2; (O) His2A-GFP, 5-HT overlay; (P) His2A-GFP, Tdc2 overlay. Scale bar: 50 μm.

Figure 9—figure supplement 3
High-resolution images of nuclear expression of VT019028-GAL4-DBD in combination with AbdB-AD in posterior ventral nerve cord of Drosophila male adult nervous system relative to 5-HT and Tdc2.

(A–E) Dorsal view of complete stack of confocal images. (A) His2A-GFP; (B) 5-HT; (C) Tdc2; (D) His2A-GFP, 5-HT overlay; (E) His2A-GFP, Tdc2 overlay. (F–J) Dorsal view of subset of slices containing the dorsal cluster of 5-HT neurons. (F) His2A-GFP; (G) 5-HT; (H) Tdc2; (I) His2A-GFP, 5-HT overlay; (J) His2A-GFP, Tdc2 overlay. (K–O) Dorsal view of subset of slices containing the ventral cluster of 5-HT neurons. (K) His2A-GFP; (L) 5-HT; (M) Tdc2; (N) His2A-GFP, 5-HT overlay; (O) His2A-GFP, Tdc2 overlay. Scale bar: 50 μm.

Figure 10 with 3 supplements
Comparison of mating duration between genotypes.

Bar plots show the mean ± SD for each group with individual data points overlaid on each bar. Statistical comparisons were made using unpaired two-tailed t tests where appropriate. Asterisks above indicate significance levels: p<0.001 (**), p<0.0001 (***), ns = not significant. (A) Columns from left to right: TRH ∩ AbdB >BONT-C: n=10, mean = 19.11, SD = 4.251. Tdc2 ∩ AbdB >BONT-C: n=14, mean = 21.80, SD = 3.155. AbdB ∩ VT019028>BONT-C: n=12, mean = 24.75, SD = 4.247. TRH ∩ VT019028>BONT-C: n=11, mean = 28.74, SD = 2.155. AbdB; BONT-C: n=8, mean = 27.07, SD = 4.907. BONT-C: n=7, mean = 28.75, SD = 4.809. WT Canton-S: n=9, mean = 26.91, SD = 3.473.

Figure 10—source data 1

Mating duration data of control and experimental genotypes.

https://cdn.elifesciences.org/articles/108225/elife-108225-fig10-data1-v1.xlsx
Figure 10—figure supplement 1
Prot-GFP fluorescent marker in male and female reproductive systems in control and TRH-AD/VT019028-GAL4-DBD neuron-silenced flies.

(A) Control. (B) TRH-AD/VT019028-GAL4-DBD neurons silenced with BONT-C. Matings were interrupted 10 min after initiation. No Prot-GFP sperm is observed in the ejaculatory duct of the experimental male. (C and D) Wild-type Canton-S female reproductive systems from completed matings to a (C) control male; and (D) TRH-AD/VT019028-GAL4-DBD male whose neurons were silenced with BONT-C. Abundant Prot-GFP sperm are observed in the mating to the control male (arrow), while no Prot-GFP sperm is observed in the female reproductive system after mating to the experimental male (arrow). Prot-GFP-Protamine GFP. SV-SV, ED-ED. Scale bars: A and B-75 μm; C and D-200 μm.

Figure 10—figure supplement 2
Comparison of male Drosophila fecundity between genotypes.

Bar plots show the mean ± SD for each group with individual data points overlaid on each bar. Figure 10—figure supplement 1A males were aged 5 days before copulation. Figure 10—figure supplement 1B males were aged 30 days before copulation. (A) Columns from left to right: TRH ∩ VT019028 → vGlut-: n=34, mean = 173.2, SD = 24.22. AbdB ∩ TRH, Tdc2 → vGlut-: n=20, mean = 175.3, SD = 22.92. TRH ∩ VT019028: n=32, mean = 149.0, SD = 26.10. TRH: n=28, mean = 172.8, SD = 21.11. VT019028: n=25, mean = 148.6, SD = 20.81. (B) TRH ∩ VT019028 → vGlut-: n=14, mean = 133.9, SD = 37.64. TRH ∩ VT019028: n=19, mean = 123.7, SD = 25.02. TRH: n=13, mean = 106.3, SD = 41.93. VT019028: n=9, mean = 131.0, SD = 38.88.

Figure 10—figure supplement 2—source data 1

Five day old male fertility data of control and experimental genotypes.

https://cdn.elifesciences.org/articles/108225/elife-108225-fig10-figsupp2-data1-v1.xlsx
Figure 10—figure supplement 2—source data 2

30 day old male fertility data of control and experimental genotypes.

https://cdn.elifesciences.org/articles/108225/elife-108225-fig10-figsupp2-data2-v1.xlsx
Figure 10—figure supplement 3
vGlut expression in accessory glands (AGs) of control and vGlut conditional mutant.

(A–C) control male. (A) vGlut; (B) 6XmCherry; (C) overlay. (D–F) experimental male conditionally silenced for vGlut in TRH-AD/VT019028-GAL4 neurons. Scale bar: 50 μm.

Videos

Video 1
Male reproductive system of a ProtB-GFP control.

Sperm with green fluorescent nuclei are visible in the ejaculatory duct of a male subjected to a mid-mating interruption.

Video 2
Male reproductive system of a ProtB-GFP experimental male in which a subset of the TRH-AD/VT019028-GAL4-DBD subset of serotonergic neurons innervating the male reproductive system have been silenced.

Sperm with green fluorescent nuclei are restricted to the seminal vesicle and never enter the ejaculatory duct from a male subjected to a mid-mating interruption.

Video 3
GCAMP8m Ca++ imaging of an ejaculatory duct experiencing spontaneous peristaltic waves of muscle contractions.
Video 4
GCAMP8m Ca++ imaging of the seminal vesicle (SV)/ejaculatory duct (ED) junction showing the initiation site of the spontaneous peristaltic waves.
Video 5
GCAMP8m Ca++ imaging of the seminal vesicle (SV)/ejaculatory duct (ED) junction showing the subtle variation in the initiation site of spontaneous peristaltic waves as compared to Video 4.
Video 6
GCAMP8m Ca++ imaging of the seminal vesicle (SV) showing spontaneous uncoordinated muscle activity.
Video 7
GCAMP8m Ca++ imaging of an accessory gland (AG) showing spontaneous uncoordinated muscle activity.
Video 8
GCAMP8m Ca++ imaging of a testes showing spontaneous uncoordinated muscle activity.
Video 9
GCAMP8m Ca++ imaging of the accessory gland (AG) showing strong coordinated muscle activity.

Tables

Table 1
Male and female fertility phenotypes.
GenotypeMale fertileFemale fertile
yw; TRH-GAL4DBD/AbdB-AD, UAS-BONT-CNoNo
yw; Tdc2-GAL4DBD/AbdB-AD, UAS-BONT-CYesNo
yw; VT019028-GAL4-DBD/AbdB-AD, UAS-BONT-CNoYes
yw; TRH-AD; UAS-BONT-C/VT019028-GAL4-DBDNoYes
yw; AbdB-AD/UAS-BONT-CYesYes
yw; UAS-BONT-CYesYes
Canton-S wild-typeYesYes
Appendix 1—key resources table
Reagent type (species) or resourceDesignationSource or referenceIdentifiersAdditional information
Genetic reagent (Drosophila melanogaster)Tdc2-GAL4Cole et al., 2005RRID:BDSC_9313
Genetic reagent (Drosophila melanogaster)GluRIIA-GAL4Deng et al., 2019RRID:BDSC_84637
Genetic reagent (Drosophila melanogaster)GluRIID-GAL4Deng et al., 2019RRID:BDSC_84638
Genetic reagent (Drosophila melanogaster)TRH-GAL4Deng et al., 2019RRID:BDSC_84694
Genetic reagent (Drosophila melanogaster)vGlut-GAL4Diao et al., 2015RRID:BDSC_60312
Genetic reagent (Drosophila melanogaster)vGlut-GAL4-DBDDiao et al., 2015
Genetic reagent (Drosophila melanogaster)Tdc2-ADDionne et al., 2018: RRID:BDSC_601902
Genetic reagent (Drosophila melanogaster)TRH-GAL4-DBDAso et al., 2014RRID:BDSC_70371
Genetic reagent (Drosophila melanogaster)TRH-ADAso et al., 2014RRID:BDSC_70975
Genetic reagent (Drosophila melanogaster)GluRIIB-GAL4Diao et al., 2015RRID:BDSC_60333
Genetic reagent (Drosophila melanogaster)GluRIIE-GAL4Diao et al., 2015RRID:BDSC_60332
Genetic reagent (Drosophila melanogaster)Oct-TyrR-GAL4Lee et al., 2018RRID:BDSC_77735
Genetic reagent (Drosophila melanogaster)GluRIIC-GAL4Lee et al., 2018RRID:BDSC_83268
Genetic reagent (Drosophila melanogaster)GluRIIA-GFPBeckers et al., 2024RRID:BDSC_99517
Genetic reagent (Drosophila melanogaster)5HT1A-GAL4Deng et al., 2019RRID:BDSC_84588
Genetic reagent (Drosophila melanogaster)5HT1B-GAL4Deng et al., 2019RRID:BDSC_84589
Genetic reagent (Drosophila melanogaster)5-HT2A-GAL4Deng et al., 2019RRID:BDSC_84590
Genetic reagent (Drosophila melanogaster)5-HT2B-GAL4Deng et al., 2019RRID:BDSC_84591
Genetic reagent (Drosophila melanogaster)5-HT7-GAL4Deng et al., 2019RRID:BDSC_84592
Genetic reagent (Drosophila melanogaster)TβH-GFPBeckers et al., 2024RRID:BDSC_80113
Genetic reagent (Drosophila melanogaster)fru-GAL4Donor: Barry Dickson, Howard Hughes Medical Institute, Janelia Research CampusRRID:BDSC_66696
Genetic reagent (Drosophila melanogaster)UAS-CD8-mCherryDonor: Frank Schnorrer, Max Planck Institute of BiochemistryRRID:BDSC_27392
Genetic reagent (Drosophila melanogaster)ProtB-GFPManier et al., 2010RRID:BDSC_58406
Genetic reagent (Drosophila melanogaster)AbdB-ADDiao et al., 2024
Genetic reagent (Drosophila melanogaster)vGlut-ADGao et al., 2008
Genetic reagent (Drosophila melanogaster)IA2-GFPYu et al., 2025
Genetic reagent (Drosophila melanogaster)UAS-BONT-CHan et al., 2022
Genetic reagent (Drosophila melanogaster)dsx-GAL4-DBDShirangi et al., 2016
Genetic reagent (Drosophila melanogaster)vGlut-40XV5Stowers, 2025germline excision of STOP cassette.
Genetic reagent (Drosophila melanogaster)vGlut-40XMYCStowers, 2025germline excision of STOP cassette.
Genetic reagent (Drosophila melanogaster)B2RT-7XMYC-vAChTTison et al., 2020germline excision of STOP cassette.
Genetic reagent (Drosophila melanogaster)RSRT-9XV5-vGATCertel et al., 2022germline excision of STOP cassette.
Genetic reagent (Drosophila melanogaster)OAMB-GAL4McKinney et al., 2020
Genetic reagent (Drosophila melanogaster)OAα2 R-GAL4McKinney et al., 2020
Genetic reagent (Drosophila melanogaster)OAβ1 R-GAL4McKinney et al., 2020
Genetic reagent (Drosophila melanogaster)OAβ2 R-GAL4McKinney et al., 2020
Genetic reagent (Drosophila melanogaster)OAβ3 R-GAL4McKinney et al., 2020
Genetic reagent (Drosophila melanogaster)FRT-F3-OAMB-10XV5Bakshinska et al., 2025
Genetic reagent (Drosophila melanogaster)B3RT-Tdc2-LexASherer et al., 2020
Genetic reagent (Drosophila melanogaster)B3RT-vGlut-LexASherer et al., 2020
Genetic reagent (Drosophila melanogaster)RSRT-STOP-RSRT-6XV5-vMATSherer et al., 2020
Genetic reagent (Drosophila melanogaster)UAS-B3Sherer et al., 2020
Genetic reagent (Drosophila melanogaster)20XUAS-RSherer et al., 2020
Genetic reagent (Drosophila melanogaster)20XUAS-B2Williams et al., 2019
Genetic reagent (Drosophila melanogaster)13XLexAop-6XmCherryShearin et al., 2014
Genetic reagent (Drosophila melanogaster)Tdc2-GAL4-DBDthis studyOctopamine split-GAL4-DBD, JK65C landing site
Genetic reagent (Drosophila melanogaster)B3RT-Tdc2-LexA germline excisionthis studyTdc2-LexA driver
Genetic reagent (Drosophila melanogaster)B3RT-vGlut-LexA germline excisionthis studyvGlut-LexA driver
Genetic reagent (Drosophila melanogaster)RSRT-6XV5-vMAT germline excisionthis studyconstitutively expressed 6XV5-vMAT
Genetic reagent (Drosophila melanogaster)FRT-F3-OAα2R-20XV5this studyconditionally expressible OAα2R-20XV5
Genetic reagent (Drosophila melanogaster)FRT-F3-OAα2R-20XV5 germline inversionthis studyconstituvely expressed OAα2R-20XV5
Genetic reagent (Drosophila melanogaster)B2RT-STOP-B2RT-OAβ2R-40XV5this studyconditionally expressible OAα2R-40XV5
Genetic reagent (Drosophila melanogaster)B2RT-OAβ2R-40XV5 germline excisionthis studyconstitutively expressed OAβ2R-40XV5
Genetic reagent (Drosophila melanogaster)5-HT7-20XV5this studyconstitutively expressed 5-HT7-20XV5
Genetic reagent (Drosophila melanogaster)MHC-GCAMP8mthis studyMuscle-specific expression of GCAMP8m, VK00027 landing site
AntibodySYN 3 C11 supernatant(DSHB Cat# 3 C11, RRID:AB_528479)Mouse monoclonalDilution 1:20
Antibodync82 (Brp) supernatant(DSHB Cat# nc82, RRID:AB_231486)Mouse monoclonalDilution 1:40
AntibodyDlg 4 F3 supernatant(DSHB Cat# 4 F3 anti-discs large, RRID:AB_528203)Mouse monoclonalDilution 1:40
AntibodyMouse anti-V5Novus NBP2-52703Mouse monoclonalDilution 1:200
AntibodyRabbit anti-V5Novus NBP2-52653Rabbit monoclonalDilution 1:200
AntibodyRat anti-V5Novus NBP2-81037Rat monoclonalDilution 1:200
AntibodyHuman anti-V5Novus NBP2-81035Human monoclonalDilution 1:200
AntibodyRat anti-MYC 9E10Novus NBP2-81020Rat monoclonalDilution 1:200
AntibodyRabbit anti-MYC 9E10Novus NBP2-52636Rabbit monoclonalDilution 1:200
AntibodyMouse anti-MYC 4 A6Millipore Sigma 05–724Mouse monoclonalDilution 1:200
AntibodyMouse anti-vGlutBanerjee et al., 2021Mouse monoclonalDilution 1:10
AntibodyMouse anti-GFP 3E6Thermo-Fisher A11120Mouse monoclonalDilution 1:200
AntibodyRabbit anti-GFPThermo-Fisher G10362Rabbit monoclonalDilution 1:200
AntibodyRat anti-mCherry 16D7ThermoFisher M11217Rat monoclonalDilution 1:200
AntibodyRabbit anti-Tdc2pab0822-P, CovalabRabbit polyclonalDilution 1:500
AntibodyRat anti-5-HT YC5Abcam ab6336Rat monoclonalDilution 1:300
AntibodyGoat anti-mouse Alexa 405Thermo-Fisher A31553Goat polyclonalDilution 1:400
AntibodyGoat anti-mouse Alexa 488Jackson Immunoresearch 115-545-166Goat polyclonalDilution 1:400
AntibodyDonkey anti-rat Alexa 488Jackson Immunoresearch 712-546-153Donkey polyclonalDilution 1:400
AntibodyGoat anti-rabbit Alexa 488Thermo-Fisher A32731Goat polyclonalDilution 1:400
AntibodyGoat anti-mouse Alexa 568Thermo Fisher A11031Goat polyclonalDilution 1:400
AntibodyGoat anti-rabbit Alexa 568Thermo Fisher A11036Goat polyclonalDilution 1:400
AntibodyDonkey anti-rat Alexa 568Thermo-Fisher A78946Donkey polyclonalDilution 1:400
AntibodyGoat anti-mouse Alexa 647Thermo-Fisher A32728Goat polyclonalDilution 1:400
AntibodyGoat anti-rabbit Alexa 647Thermo-Fisher A32733Goat polyclonalDilution 1:400
AntibodyGoat anti-rat Alexa 647Thermo-Fisher A48265Goat polyclonalDilution 1:400
AntibodyGoat anti-mouse ATTO 647 NRockland 610-156-121Goat polyclonalDilution 1:100
AntibodyGoat anti-rabbit ATTO 647 NRockland 611-156-122Goat polyclonalDilution 1:100
AntibodyGoat anti-rat ATTO 647 NRockland 612-156-120Goat polyclonalDilution 1:100
AntibodyDonkey anti-human Alexa 790Jackson Immunoresearch 709-655-149Donkey polyclonalDilution 1:400
otherStain, Phalloidin iFluor 405Abcam AB176752Dilution 1:800
Chemical compound, drugTriton X-100Sigma-Aldrich T8787X-100
Chemical compound, drugBovine serum albuminLampire-cat#–7500804
Chemical compound, drugAcryloyl-X SEThermo Fisher A20770
Chemical compound, drugAmmonium persulfateSigma-Aldrich 215589
Chemical compound, drugAcrylamide 40% solutionSigma-Aldrich 01697
Chemical compound, drugN,N'-Methylenebisacrylamide (bis) 2% solutionSigma-Aldrich M1533
Chemical compound, drugDAPIThermo Fisher D13062μg/ml
Chemical compound, drugProteinase KNew England Biolabs P81075Dilution 1:20
Software, algorithmImage JSchindelin et al., 2012

Additional files

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Marta Chaverra
  2. John Paul Toney
  3. Lizetta D Dardenne-Ankringa
  4. Jace Tolleson Knee
  5. Ann R Morris
  6. Joseph B Wadhams
  7. Sarah J Certel
  8. R Steven Stowers
(2026)
Two classes of amine/glutamate multi-transmitter neurons innervate Drosophila internal male reproductive organs
eLife 14:RP108225.
https://doi.org/10.7554/eLife.108225.3