ETS family transcriptional regulators drive chromatin dynamics and malignancy in squamous cell carcinomas

  1. Hanseul Yang
  2. Daniel Schramek
  3. Rene C Adam
  4. Brice E Keyes
  5. Ping Wang
  6. Deyou Zheng
  7. Elaine Fuchs  Is a corresponding author
  1. Howard Hughes Medical Institute, The Rockefeller University, United States
  2. Mount Sinai Hospital, United States
  3. Albert Einstein College of Medicine, United States

Abstract

Tumor-initiating stem cells (SCs) exhibit distinct patterns of transcription factors and gene expression compared to healthy counterparts. Here, we show that dramatic shifts in large open-chromatin domain (super-enhancer) landscapes underlie these differences and reflect tumor microenvironment. By in vivo super-enhancer and transcriptional profiling, we uncover a dynamic cancer-specific epigenetic network selectively enriched for binding motifs of a transcription factor cohort expressed in squamous cell carcinoma SCs (SCC-SCs). Many of their genes, including Ets2 and Elk3, are themselves regulated by SCC-SC super-enhancers suggesting a cooperative feed-forward loop. Malignant progression requires these genes, whose knockdown severely impairs tumor growth and prohibits progression from benign papillomas to SCCs. ETS2-deficiency disrupts the SCC-SC super-enhancer landscape and downstream cancer genes while ETS2-overactivation in epidermal-SCs induces hyperproliferation and SCC super-enhancer-associated genes Fos, Junb and Klf5. Together, our findings unearth an essential regulatory network required for the SCC-SC chromatin landscape and unveil its importance in malignant progression.

Article and author information

Author details

  1. Hanseul Yang

    Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
  2. Daniel Schramek

    Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, United States
    Competing interests
    No competing interests declared.
  3. Rene C Adam

    Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
  4. Brice E Keyes

    Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
  5. Ping Wang

    Department of Neurology, Albert Einstein College of Medicine, New York, United States
    Competing interests
    No competing interests declared.
  6. Deyou Zheng

    Department of Neurology, Albert Einstein College of Medicine, New York, United States
    Competing interests
    No competing interests declared.
  7. Elaine Fuchs

    Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
    For correspondence
    elaine.fuchs@rockefeller.edu
    Competing interests
    Elaine Fuchs, Reviewing editor, eLife.

Ethics

Animal experimentation: Mice were maintained in the Association for Assessment and Accreditation of Laboratory Animal Care-accredited animal facility of The Rockefeller University (RU), and procedures were performed with Institutional Animal Care and Use Committee (IACUC)-approved protocols (#13622-H, #14693-H and #14765-H).

Human subjects: Tissue microarrays comprising healthy human skin samples, human skin SCCs as well as head and neck SCCs (HNSCC) were obtained from US Biomax, Rockeville. All tissue is collected under the highest ethical standards with the donor being informed completely and with their consent. The company followed standard medical care and protect the donors' privacy. All human tissues are collected under HIPPA approved protocols.

Copyright

© 2015, Yang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,758
    views
  • 1,210
    downloads
  • 71
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hanseul Yang
  2. Daniel Schramek
  3. Rene C Adam
  4. Brice E Keyes
  5. Ping Wang
  6. Deyou Zheng
  7. Elaine Fuchs
(2015)
ETS family transcriptional regulators drive chromatin dynamics and malignancy in squamous cell carcinomas
eLife 4:e10870.
https://doi.org/10.7554/eLife.10870

Share this article

https://doi.org/10.7554/eLife.10870

Further reading

    1. Stem Cells and Regenerative Medicine
    Sarah Duchamp de Chastaigne, Catherine M Sawai
    Insight

    A new mathematical model can estimate the number of precursor cells that contribute to regenerating blood cells in mice.

    1. Cell Biology
    2. Stem Cells and Regenerative Medicine
    Rajdeep Banerjee, Thomas J Meyer ... David D Roberts
    Research Article

    Extramedullary erythropoiesis is not expected in healthy adult mice, but erythropoietic gene expression was elevated in lineage-depleted spleen cells from Cd47−/− mice. Expression of several genes associated with early stages of erythropoiesis was elevated in mice lacking CD47 or its signaling ligand thrombospondin-1, consistent with previous evidence that this signaling pathway inhibits expression of multipotent stem cell transcription factors in spleen. In contrast, cells expressing markers of committed erythroid progenitors were more abundant in Cd47−/− spleens but significantly depleted in Thbs1−/− spleens. Single-cell transcriptome and flow cytometry analyses indicated that loss of CD47 is associated with accumulation and increased proliferation in spleen of Ter119CD34+ progenitors and Ter119+CD34 committed erythroid progenitors with elevated mRNA expression of Kit, Ermap, and Tfrc. Induction of committed erythroid precursors is consistent with the known function of CD47 to limit the phagocytic removal of aged erythrocytes. Conversely, loss of thrombospondin-1 delays the turnover of aged red blood cells, which may account for the suppression of committed erythroid precursors in Thbs1−/− spleens relative to basal levels in wild-type mice. In addition to defining a role for CD47 to limit extramedullary erythropoiesis, these studies reveal a thrombospondin-1-dependent basal level of extramedullary erythropoiesis in adult mouse spleen.