The carcinine transporter CarT is required in Drosophila photoreceptor neurons to sustain histamine recycling

  1. Drew Stenesen
  2. Andrew T Moehlman
  3. Helmut Krämer  Is a corresponding author
  1. University of Texas Southwestern Medical Center, United States

Abstract

Synaptic transmission from Drosophila photoreceptors to lamina neurons requires recycling of histamine neurotransmitter. Synaptic histamine is cleared by uptake into glia and conversion into carcinine, which functions as transport metabolite. How carcinine is transported from glia to photoreceptor neurons remains unclear. In a targeted RNAi screen for genes involved in this pathway we identified carT, which encodes a member of the SLC22A transporter family. CarT expression in photoreceptors is necessary and sufficient for fly vision and behavior. In the lamina of carT flies, carcinine accumulates. Wild-type levels are restored by photoreceptor-specific expression of CarT, and endogenous tagging suggests CarT localizes to synaptic endings. Heterologous expression of CarT in S2 cells is sufficient for carcinine uptake, demonstrating the ability of CarT to utilize carcinine as a transport substrate. Together, our results demonstrate that CarT transports the histamine metabolite carcinine into photoreceptor neurons, thus contributing an essential step in the histamine-carcinine cycle.

Article and author information

Author details

  1. Drew Stenesen

    Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Andrew T Moehlman

    Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Helmut Krämer

    Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    helmut.kramer@utsouthwestern.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Hugo J Bellen, Howard Hughes Medical Institute, Baylor College of Medicine, United States

Publication history

  1. Received: August 19, 2015
  2. Accepted: December 13, 2015
  3. Accepted Manuscript published: December 14, 2015 (version 1)
  4. Version of Record published: January 25, 2016 (version 2)

Copyright

© 2015, Stenesen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,227
    Page views
  • 271
    Downloads
  • 29
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Drew Stenesen
  2. Andrew T Moehlman
  3. Helmut Krämer
(2015)
The carcinine transporter CarT is required in Drosophila photoreceptor neurons to sustain histamine recycling
eLife 4:e10972.
https://doi.org/10.7554/eLife.10972

Further reading

    1. Neuroscience
    Flavia Venetucci Gouveia, Jurgen Germann ... Clement Hamani
    Research Article Updated

    Deep brain stimulation targeting the posterior hypothalamus (pHyp-DBS) is being investigated as a treatment for refractory aggressive behavior, but its mechanisms of action remain elusive. We conducted an integrated imaging analysis of a large multi-centre dataset, incorporating volume of activated tissue modeling, probabilistic mapping, normative connectomics, and atlas-derived transcriptomics. Ninety-one percent of the patients responded positively to treatment, with a more striking improvement recorded in the pediatric population. Probabilistic mapping revealed an optimized surgical target within the posterior-inferior-lateral region of the posterior hypothalamic area. Normative connectomic analyses identified fiber tracts and functionally connected with brain areas associated with sensorimotor function, emotional regulation, and monoamine production. Functional connectivity between the target, periaqueductal gray and key limbic areas – together with patient age – were highly predictive of treatment outcome. Transcriptomic analysis showed that genes involved in mechanisms of aggressive behavior, neuronal communication, plasticity and neuroinflammation might underlie this functional network.

    1. Chromosomes and Gene Expression
    2. Neuroscience
    Bradley M Colquitt, Kelly Li ... Michael S Brainard
    Research Article

    Sensory feedback is required for the stable execution of learned motor skills, and its loss can severely disrupt motor performance. The neural mechanisms that mediate sensorimotor stability have been extensively studied at systems and physiological levels, yet relatively little is known about how disruptions to sensory input alter the molecular properties of associated motor systems. Songbird courtship song, a model for skilled behavior, is a learned and highly structured vocalization that is destabilized following deafening. Here, we sought to determine how the loss of auditory feedback modifies gene expression and its coordination across the birdsong sensorimotor circuit. To facilitate this system-wide analysis of transcriptional responses, we developed a gene expression profiling approach that enables the construction of hundreds of spatially-defined RNA-sequencing libraries. Using this method, we found that deafening preferentially alters gene expression across birdsong neural circuitry relative to surrounding areas, particularly in premotor and striatal regions. Genes with altered expression are associated with synaptic transmission, neuronal spines, and neuromodulation and show a bias toward expression in glutamatergic neurons and Pvalb/Sst-class GABAergic interneurons. We also found that connected song regions exhibit correlations in gene expression that were reduced in deafened birds relative to hearing birds, suggesting that song destabilization alters the inter-region coordination of transcriptional states. Finally, lesioning LMAN, a forebrain afferent of RA required for deafening-induced song plasticity, had the largest effect on groups of genes that were also most affected by deafening. Combined, this integrated transcriptomics analysis demonstrates that the loss of peripheral sensory input drives a distributed gene expression response throughout associated sensorimotor neural circuitry and identifies specific candidate molecular and cellular mechanisms that support the stability and plasticity of learned motor skills.