Demixed principal component analysis of neural population data

  1. Dmitry Kobak  Is a corresponding author
  2. Wieland Brendel
  3. Christos Constantinidis
  4. Claudia E Feierstein
  5. Adam Kepecs
  6. Zachary F Mainen
  7. Ranulfo Romo
  8. Xue-Lian Qi
  9. Naoshige Uchida
  10. Christian K Machens
  1. Champalimaud Centre for the Unknown, Portugal
  2. Wake Forest University School of Medicine, United States
  3. Cold Spring Harbor Laboratory, United States
  4. Universidad Nacional Autónoma de México, Mexico
  5. Harvard University, United States

Abstract

Neurons in higher cortical areas, such as the prefrontal cortex, are often tuned to a variety of sensory and motor variables, and are therefore said to display mixed selectivity. This complexity of single neuron responses can obscure what information these areas represent and how it is represented. Here we demonstrate the advantages of a new dimensionality reduction technique, demixed principal component analysis (dPCA), that decomposes population activity into a few components. In addition to systematically capturing the majority of the variance of the data, dPCA also exposes the dependence of the neural representation on task parameters such as stimuli, decisions, or rewards. To illustrate our method we reanalyze population data from four datasets comprising different species, different cortical areas and different experimental tasks. In each case, dPCA provides a concise way of visualizing the data that summarizes the task-dependent features of the population response in a single figure.

Article and author information

Author details

  1. Dmitry Kobak

    Champalimaud Neuroscience Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
    For correspondence
    dmitry.kobak@neuro.fchampalimaud.org
    Competing interests
    No competing interests declared.
  2. Wieland Brendel

    Champalimaud Neuroscience Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
    Competing interests
    No competing interests declared.
  3. Christos Constantinidis

    Wake Forest University School of Medicine, Winston-Salem, United States
    Competing interests
    No competing interests declared.
  4. Claudia E Feierstein

    Champalimaud Neuroscience Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
    Competing interests
    No competing interests declared.
  5. Adam Kepecs

    Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    No competing interests declared.
  6. Zachary F Mainen

    Champalimaud Neuroscience Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
    Competing interests
    No competing interests declared.
  7. Ranulfo Romo

    Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
    Competing interests
    No competing interests declared.
  8. Xue-Lian Qi

    Wake Forest University School of Medicine, Winston-Salem, United States
    Competing interests
    No competing interests declared.
  9. Naoshige Uchida

    Harvard University, Cambridge, United States
    Competing interests
    Naoshige Uchida, Reviewing editor, eLife.
  10. Christian K Machens

    Champalimaud Neuroscience Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
    Competing interests
    No competing interests declared.

Copyright

© 2016, Kobak et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 40,970
    views
  • 6,885
    downloads
  • 486
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dmitry Kobak
  2. Wieland Brendel
  3. Christos Constantinidis
  4. Claudia E Feierstein
  5. Adam Kepecs
  6. Zachary F Mainen
  7. Ranulfo Romo
  8. Xue-Lian Qi
  9. Naoshige Uchida
  10. Christian K Machens
(2016)
Demixed principal component analysis of neural population data
eLife 5:e10989.
https://doi.org/10.7554/eLife.10989

Share this article

https://doi.org/10.7554/eLife.10989

Further reading

    1. Neuroscience
    Lotfi Ferhat, Rabia Soussi ... Michel Khrestchatisky
    Research Article

    Preclinical and clinical studies show that mild to moderate hypothermia is neuroprotective in sudden cardiac arrest, ischemic stroke, perinatal hypoxia/ischemia, traumatic brain injury, and seizures. Induction of hypothermia largely involves physical cooling therapies, which induce several clinical complications, while some molecules have shown to be efficient in pharmacologically induced hypothermia (PIH). Neurotensin (NT), a 13 amino acid neuropeptide that regulates body temperature, interacts with various receptors to mediate its peripheral and central effects. NT induces PIH when administered intracerebrally. However, these effects are not observed if NT is administered peripherally, due to its rapid degradation and poor passage of the blood-brain barrier (BBB). We conjugated NT to peptides that bind the low-density lipoprotein receptor (LDLR) to generate ‘vectorized’ forms of NT with enhanced BBB permeability. We evaluated their effects in epileptic conditions following peripheral administration. One of these conjugates, VH-N412, displayed improved stability, binding potential to both the LDLR and NTSR-1, rodent/human cross-reactivity and improved brain distribution. In a mouse model of kainate (KA)-induced status epilepticus (SE), VH-N412 elicited rapid hypothermia associated with anticonvulsant effects, potent neuroprotection, and reduced hippocampal inflammation. VH-N412 also reduced sprouting of the dentate gyrus mossy fibers and preserved learning and memory skills in the treated mice. In cultured hippocampal neurons, VH-N412 displayed temperature-independent neuroprotective properties. To the best of our knowledge, this is the first report describing the successful treatment of SE with PIH. In all, our results show that vectorized NT may elicit different neuroprotection mechanisms mediated by hypothermia and/or by intrinsic neuroprotective properties.

    1. Neuroscience
    Simon Weiler, Manuel Teichert, Troy W Margrie
    Research Article

    The neocortex comprises anatomically discrete yet interconnected areas that are symmetrically located across the two hemispheres. Determining the logic of these macrocircuits is necessary for understanding high level brain function. Here in mice, we have mapped the areal and laminar organization of the ipsi- and contralateral cortical projection onto the primary visual, somatosensory, and motor cortices. We find that although the ipsilateral hemisphere is the primary source of cortical input, there is substantial contralateral symmetry regarding the relative contribution and areal identity of input. Laminar analysis of these input areas show that excitatory Layer 6 corticocortical cells (L6 CCs) are a major projection pathway within and between the two hemispheres. Analysis of the relative contribution of inputs from supra- (feedforward) and infragranular (feedback) layers reveals that contra-hemispheric projections reflect a dominant feedback organization compared to their ipsi-cortical counterpart. The magnitude of the interhemispheric difference in hierarchy was largest for sensory and motor projection areas compared to frontal, medial, or lateral brain areas due to a proportional increase in input from L6 neurons. L6 CCs therefore not only mediate long-range cortical communication but also reflect its inherent feedback organization.