A dystonia-like movement disorder with brain and spinal neuronal defects is caused by mutation of the mouse laminin β1 subunit, Lamb1

  1. Yi Bessie Liu
  2. Ambika Tewari
  3. Johnny Salameh
  4. Elena Arystarkhova
  5. Thomas G Hampton
  6. Allison Brashear
  7. Laurie J Ozelius
  8. Kamran Khodakhah
  9. Kathleen J Sweadner  Is a corresponding author
  1. Harvard Medical School, United States
  2. Albert Einstein College of Medicine, United States
  3. University of Massachusetts Medical School, United States
  4. Mouse Specifics Inc., United States
  5. Wake Forest University School of Medicine, United States

Abstract

A new mutant mouse (lamb1t) exhibits intermittent dystonic hindlimb movements and postures when awake, and hyperextension when asleep. Experiments showed co-contraction of opposing muscle groups, and indicated that symptoms depended on the interaction of brain and spinal cord. SNP mapping and exome sequencing identified the dominant causative mutation in the Lamb1 gene. Laminins are extracellular matrix proteins, widely expressed but also known to be important in synapse structure and plasticity. In accordance, awake recording in the cerebellum detected abnormal output from a circuit of two Lamb1-expressing neurons, Purkinje cells and their deep cerebellar nucleus targets, during abnormal postures. We propose that dystonia-like symptoms result from lapses in descending inhibition, exposing excess activity in intrinsic spinal circuits that coordinate muscles. The mouse is a new model for testing how dysfunction in the CNS causes specific abnormal movements and postures.

Article and author information

Author details

  1. Yi Bessie Liu

    Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  2. Ambika Tewari

    Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, United States
    Competing interests
    No competing interests declared.
  3. Johnny Salameh

    Department of Neurology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    No competing interests declared.
  4. Elena Arystarkhova

    Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  5. Thomas G Hampton

    Neuroscience Discovery Core, Mouse Specifics Inc., Framingham, United States
    Competing interests
    Thomas G Hampton, owner of the company that has commercialized the gait analysis instrumentation described.
  6. Allison Brashear

    Department of Neurology, Wake Forest University School of Medicine, Winston-Salem, United States
    Competing interests
    Allison Brashear, performs research at Wake Forest with grants from Allergan, Ipsen, and Merz, and has consulting relationships with Allergan and Concerta. Her conflict of interest is managed by Wake Forest School of Medicine.
  7. Laurie J Ozelius

    Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  8. Kamran Khodakhah

    Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, United States
    Competing interests
    No competing interests declared.
  9. Kathleen J Sweadner

    Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, United States
    For correspondence
    sweadner@helix.mgh.harvard.edu
    Competing interests
    No competing interests declared.

Ethics

Animal experimentation: All animal research followed the NRC Guide for the Care and Use of Laboratory Animals and the policies of the Massachusetts General Hospital or Albert Einstein College of Medicine: MGH IACUC approved protocol 2011N000108, and Albert Einstein approved protocol 20130801.

Copyright

© 2015, Liu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,917
    views
  • 404
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yi Bessie Liu
  2. Ambika Tewari
  3. Johnny Salameh
  4. Elena Arystarkhova
  5. Thomas G Hampton
  6. Allison Brashear
  7. Laurie J Ozelius
  8. Kamran Khodakhah
  9. Kathleen J Sweadner
(2015)
A dystonia-like movement disorder with brain and spinal neuronal defects is caused by mutation of the mouse laminin β1 subunit, Lamb1
eLife 4:e11102.
https://doi.org/10.7554/eLife.11102

Share this article

https://doi.org/10.7554/eLife.11102

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Timothy J Abreo, Emma C Thompson ... Edward C Cooper
    Research Article

    KCNQ2 variants in children with neurodevelopmental impairment are difficult to assess due to their heterogeneity and unclear pathogenic mechanisms. We describe a child with neonatal-onset epilepsy, developmental impairment of intermediate severity, and KCNQ2 G256W heterozygosity. Analyzing prior KCNQ2 channel cryoelectron microscopy models revealed G256 as a node of an arch-shaped non-covalent bond network linking S5, the pore turret, and the ion path. Co-expression with G256W dominantly suppressed conduction by wild-type subunits in heterologous cells. Ezogabine partly reversed this suppression. Kcnq2G256W/+ mice have epilepsy leading to premature deaths. Hippocampal CA1 pyramidal cells from G256W/+ brain slices showed hyperexcitability. G256W/+ pyramidal cell KCNQ2 and KCNQ3 immunolabeling was significantly shifted from axon initial segments to neuronal somata. Despite normal mRNA levels, G256W/+ mouse KCNQ2 protein levels were reduced by about 50%. Our findings indicate that G256W pathogenicity results from multiplicative effects, including reductions in intrinsic conduction, subcellular targeting, and protein stability. These studies provide evidence for an unexpected and novel role for the KCNQ2 pore turret and introduce a valid animal model of KCNQ2 encephalopathy. Our results, spanning structure to behavior, may be broadly applicable because the majority of KCNQ2 encephalopathy patients share variants near the selectivity filter.

    1. Neuroscience
    Ziyue Zhou, Su Young Han ... Allan E Herbison
    Research Article

    One in ten women in their reproductive age suffer from polycystic ovary syndrome (PCOS) that, alongside subfertility and hyperandrogenism, typically presents with increased luteinizing hormone (LH) pulsatility. As such, it is suspected that the arcuate kisspeptin (ARNKISS) neurons that represent the GnRH pulse generator are dysfunctional in PCOS. We used here in vivo GCaMP fiber photometry and other approaches to examine the behavior of the GnRH pulse generator in two mouse models of PCOS. We began with the peripubertal androgen (PPA) mouse model of PCOS but found that it had a reduction in the frequency of ARNKISS neuron synchronization events (SEs) that drive LH pulses. Examining the prenatal androgen (PNA) model of PCOS, we observed highly variable patterns of pulse generator activity with no significant differences detected in ARNKISS neuron SEs, pulsatile LH secretion, or serum testosterone, estradiol, and progesterone concentrations. However, a machine learning approach identified that the ARNKISS neurons of acyclic PNA mice continued to exhibit cyclical patterns of activity similar to that of normal mice. The frequency of ARNKISS neuron SEs was significantly increased in algorithm-identified ‘diestrous stage’ PNA mice compared to controls. In addition, ARNKISS neurons exhibited reduced feedback suppression to progesterone in PNA mice and their gonadotrophs were also less sensitive to GnRH. These observations demonstrate the importance of understanding GnRH pulse generator activity in mouse models of PCOS. The existence of cyclical GnRH pulse generator activity in the acyclic PNA mouse indicates the presence of a complex phenotype with deficits at multiple levels of the hypothalamo-pituitary-gonadal axis.