A dystonia-like movement disorder with brain and spinal neuronal defects is caused by mutation of the mouse laminin β1 subunit, Lamb1

  1. Yi Bessie Liu
  2. Ambika Tewari
  3. Johnny Salameh
  4. Elena Arystarkhova
  5. Thomas G Hampton
  6. Allison Brashear
  7. Laurie J Ozelius
  8. Kamran Khodakhah
  9. Kathleen J Sweadner  Is a corresponding author
  1. Harvard Medical School, United States
  2. Albert Einstein College of Medicine, United States
  3. University of Massachusetts Medical School, United States
  4. Mouse Specifics Inc., United States
  5. Wake Forest University School of Medicine, United States

Abstract

A new mutant mouse (lamb1t) exhibits intermittent dystonic hindlimb movements and postures when awake, and hyperextension when asleep. Experiments showed co-contraction of opposing muscle groups, and indicated that symptoms depended on the interaction of brain and spinal cord. SNP mapping and exome sequencing identified the dominant causative mutation in the Lamb1 gene. Laminins are extracellular matrix proteins, widely expressed but also known to be important in synapse structure and plasticity. In accordance, awake recording in the cerebellum detected abnormal output from a circuit of two Lamb1-expressing neurons, Purkinje cells and their deep cerebellar nucleus targets, during abnormal postures. We propose that dystonia-like symptoms result from lapses in descending inhibition, exposing excess activity in intrinsic spinal circuits that coordinate muscles. The mouse is a new model for testing how dysfunction in the CNS causes specific abnormal movements and postures.

Article and author information

Author details

  1. Yi Bessie Liu

    Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  2. Ambika Tewari

    Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, United States
    Competing interests
    No competing interests declared.
  3. Johnny Salameh

    Department of Neurology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    No competing interests declared.
  4. Elena Arystarkhova

    Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  5. Thomas G Hampton

    Neuroscience Discovery Core, Mouse Specifics Inc., Framingham, United States
    Competing interests
    Thomas G Hampton, owner of the company that has commercialized the gait analysis instrumentation described.
  6. Allison Brashear

    Department of Neurology, Wake Forest University School of Medicine, Winston-Salem, United States
    Competing interests
    Allison Brashear, performs research at Wake Forest with grants from Allergan, Ipsen, and Merz, and has consulting relationships with Allergan and Concerta. Her conflict of interest is managed by Wake Forest School of Medicine.
  7. Laurie J Ozelius

    Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  8. Kamran Khodakhah

    Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, United States
    Competing interests
    No competing interests declared.
  9. Kathleen J Sweadner

    Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, United States
    For correspondence
    sweadner@helix.mgh.harvard.edu
    Competing interests
    No competing interests declared.

Ethics

Animal experimentation: All animal research followed the NRC Guide for the Care and Use of Laboratory Animals and the policies of the Massachusetts General Hospital or Albert Einstein College of Medicine: MGH IACUC approved protocol 2011N000108, and Albert Einstein approved protocol 20130801.

Copyright

© 2015, Liu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,972
    views
  • 407
    downloads
  • 25
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yi Bessie Liu
  2. Ambika Tewari
  3. Johnny Salameh
  4. Elena Arystarkhova
  5. Thomas G Hampton
  6. Allison Brashear
  7. Laurie J Ozelius
  8. Kamran Khodakhah
  9. Kathleen J Sweadner
(2015)
A dystonia-like movement disorder with brain and spinal neuronal defects is caused by mutation of the mouse laminin β1 subunit, Lamb1
eLife 4:e11102.
https://doi.org/10.7554/eLife.11102

Share this article

https://doi.org/10.7554/eLife.11102

Further reading

    1. Immunology and Inflammation
    2. Neuroscience
    Jeremy M Shea, Saul A Villeda
    Research Article

    During aging, microglia – the resident macrophages of the brain – exhibit altered phenotypes and contribute to age-related neuroinflammation. While numerous hallmarks of age-related microglia have been elucidated, the progression from homeostasis to dysfunction during the aging process remains unresolved. To bridge this gap in knowledge, we undertook complementary cellular and molecular analyses of microglia in the mouse hippocampus across the adult lifespan and in the experimental aging model of heterochronic parabiosis. Single-cell RNA-Seq and pseudotime analysis revealed age-related transcriptional heterogeneity in hippocampal microglia and identified intermediate states of microglial aging that also emerge following heterochronic parabiosis. We tested the functionality of intermediate stress response states via TGFβ1 and translational states using pharmacological approaches in vitro to reveal their modulation of the progression to an activated state. Furthermore, we utilized single-cell RNA-Seq in conjunction with in vivo adult microglia-specific Tgfb1 conditional genetic knockout mouse models to demonstrate that microglia advancement through intermediate aging states drives transcriptional inflammatory activation and hippocampal-dependent cognitive decline.

    1. Neuroscience
    William Hockeimer, Ruo-Yah Lai ... James J Knierim
    Research Article

    The hippocampus is believed to encode episodic memory by binding information about the content of experience within a spatiotemporal framework encoding the location and temporal context of that experience. Previous work implies a distinction between positional inputs to the hippocampus from upstream brain regions that provide information about an animal’s location and nonpositional inputs which provide information about the content of experience, both sensory and navigational. Here, we leverage the phenomenon of ‘place field repetition’ to better understand the functional dissociation between positional and nonpositional information encoded in CA1. Rats navigated freely on a novel maze consisting of linear segments arranged in a rectilinear, city-block configuration, which combined elements of open-field foraging and linear-track tasks. Unlike typical results in open-field foraging, place fields were directionally tuned on the maze, even though the animal’s behavior was not constrained to extended, one-dimensional (1D) trajectories. Repeating fields from the same cell tended to have the same directional preference when the fields were aligned along a linear corridor of the maze, but they showed uncorrelated directional preferences when they were unaligned across different corridors. Lastly, individual fields displayed complex time dynamics which resulted in the population activity changing gradually over the course of minutes. These temporal dynamics were evident across repeating fields of the same cell. These results demonstrate that the positional inputs that drive a cell to fire in similar locations across the maze can be behaviorally and temporally dissociated from the nonpositional inputs that alter the firing rates of the cell within its place fields, offering a potential mechanism to increase the flexibility of the system to encode episodic variables within a spatiotemporal framework provided by place cells.