Salicylate, diflunisal and their metabolites inhibit CBP/p300 and exhibit anticancer activity

  1. Kotaro Shirakawa
  2. Lan Wang
  3. Na Man
  4. Jasna Maksimoska
  5. Alexander W Sorum
  6. Hyung W Lim
  7. Intelly S Lee
  8. Tadahiro Shimazu
  9. John C Newman
  10. Sebastian Schröder
  11. Melanie Ott
  12. Ronen Marmorstein
  13. Jordan Meier
  14. Stephen Nimer
  15. Eric Verdin  Is a corresponding author
  1. Gladstone Institutes, United States
  2. University of Miami, United States
  3. University of Pennsylvania, United States
  4. National Cancer Institute, United States

Abstract

Salicylate and acetylsalicylic acid are potent and widely used anti-inflammatory drugs. They are thought to exert their therapeutic effects through multiple mechanisms, including the inhibition of cyclo-oxygenases, modulation of NF-κB activity, and direct activation of AMPK. However, the full spectrum of their activities is incompletely understood. Here we show that salicylate specifically inhibits CBP and p300 lysine acetyltransferase activity in vitro by direct competition with acetyl-Coenzyme A at the catalytic site. We used a chemical structure-similarity search to identify another anti-inflammatory drug, diflunisal, that inhibits p300 more potently than salicylate. At concentrations attainable in human plasma after oral administration, both salicylate and diflunisal blocked the acetylation of lysine residues on histone and non-histone proteins in cells. Finally, we found that diflunisal suppressed the growth of p300-dependent leukemia cell lines expressing AML1-ETO fusion protein in vitro and in vivo. These results highlight a novel epigenetic regulatory mechanism of action for salicylate and derivative drugs.

Article and author information

Author details

  1. Kotaro Shirakawa

    Gladstone Institutes, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Lan Wang

    University of Miami, Gables, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Na Man

    University of Miami, Gables, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jasna Maksimoska

    Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Alexander W Sorum

    Chemical Biology Laboratory, National Cancer Institute, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Hyung W Lim

    Gladstone Institutes, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Intelly S Lee

    Gladstone Institutes, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Tadahiro Shimazu

    Gladstone Institutes, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. John C Newman

    Gladstone Institutes, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Sebastian Schröder

    Gladstone Institutes, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Melanie Ott

    Gladstone Institutes, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Ronen Marmorstein

    Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Jordan Meier

    Chemical Biology Laboratory, National Cancer Institute, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Stephen Nimer

    University of Miami, Gables, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Eric Verdin

    Gladstone Institutes, San Francisco, United States
    For correspondence
    everdin@gladstone.ucsf.edu
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2016, Shirakawa et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kotaro Shirakawa
  2. Lan Wang
  3. Na Man
  4. Jasna Maksimoska
  5. Alexander W Sorum
  6. Hyung W Lim
  7. Intelly S Lee
  8. Tadahiro Shimazu
  9. John C Newman
  10. Sebastian Schröder
  11. Melanie Ott
  12. Ronen Marmorstein
  13. Jordan Meier
  14. Stephen Nimer
  15. Eric Verdin
(2016)
Salicylate, diflunisal and their metabolites inhibit CBP/p300 and exhibit anticancer activity
eLife 5:e11156.
https://doi.org/10.7554/eLife.11156

Share this article

https://doi.org/10.7554/eLife.11156

Further reading

    1. Cancer Biology
    2. Cell Biology
    Maojin Tian, Le Yang ... Peiqing Zhao
    Research Article

    TIPE (TNFAIP8) has been identified as an oncogene and participates in tumor biology. However, how its role in the metabolism of tumor cells during melanoma development remains unclear. Here, we demonstrated that TIPE promoted glycolysis by interacting with pyruvate kinase M2 (PKM2) in melanoma. We found that TIPE-induced PKM2 dimerization, thereby facilitating its translocation from the cytoplasm to the nucleus. TIPE-mediated PKM2 dimerization consequently promoted HIF-1α activation and glycolysis, which contributed to melanoma progression and increased its stemness features. Notably, TIPE specifically phosphorylated PKM2 at Ser 37 in an extracellular signal-regulated kinase (ERK)-dependent manner. Consistently, the expression of TIPE was positively correlated with the levels of PKM2 Ser37 phosphorylation and cancer stem cell (CSC) markers in melanoma tissues from clinical samples and tumor bearing mice. In summary, our findings indicate that the TIPE/PKM2/HIF-1α signaling pathway plays a pivotal role in promoting CSC properties by facilitating the glycolysis, which would provide a promising therapeutic target for melanoma intervention.

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Ananda Kishore Mukherjee, Subhajit Dutta ... Shantanu Chowdhury
    Research Article

    Telomeres are crucial for cancer progression. Immune signalling in the tumour microenvironment has been shown to be very important in cancer prognosis. However, the mechanisms by which telomeres might affect tumour immune response remain poorly understood. Here, we observed that interleukin-1 signalling is telomere-length dependent in cancer cells. Mechanistically, non-telomeric TRF2 (telomeric repeat binding factor 2) binding at the IL-1-receptor type-1 (IL1R1) promoter was found to be affected by telomere length. Enhanced TRF2 binding at the IL1R1 promoter in cells with short telomeres directly recruited the histone-acetyl-transferase (HAT) p300, and consequent H3K27 acetylation activated IL1R1. This altered NF-kappa B signalling and affected downstream cytokines like IL6, IL8, and TNF. Further, IL1R1 expression was telomere-sensitive in triple-negative breast cancer (TNBC) clinical samples. Infiltration of tumour-associated macrophages (TAM) was also sensitive to the length of tumour cell telomeres and highly correlated with IL1R1 expression. The use of both IL1 Receptor antagonist (IL1RA) and IL1R1 targeting ligands could abrogate M2 macrophage infiltration in TNBC tumour organoids. In summary, using TNBC cancer tissue (>90 patients), tumour-derived organoids, cancer cells, and xenograft tumours with either long or short telomeres, we uncovered a heretofore undeciphered function of telomeres in modulating IL1 signalling and tumour immunity.