Maturation of metabolic connectivity of the adolescent rat brain

  1. Hongyoon Choi
  2. Yoori Choi
  3. Kyu Wan Kim
  4. Hyejin Kang
  5. Do Won Hwang
  6. E Edmund Kim
  7. June-Key Chung
  8. Dong Soo Lee  Is a corresponding author
  1. Seoul National University College of Medicine, Republic of Korea

Abstract

Neuroimaging has been used to examine developmental changes of the brain. While PET studies revealed maturation related changes, maturation of metabolic connectivity of the brain is not yet understood. Here, we show that rat brain metabolism is reconfigured to achieve long-distance connections with higher energy efficiency during maturation. Metabolism increased in anterior cerebrum and decreased in thalamus and cerebellum during maturation. When functional covariance patterns of PET images were examined, metabolic networks including default mode network (DMN) were extracted. Connectivity increased between the anterior and posterior parts of DMN and sensory-motor cortices during maturation. Energy efficiency, a ratio of connectivity strength to metabolism of a region, increased in medial prefrontal and retrosplenial cortices. Our data revealed that metabolic networks mature to increase metabolic connections and establish its efficiency between large-scale spatial components from childhood to early adulthood. Neurodevelopmental diseases might be understood by abnormal reconfiguration of metabolic connectivity and efficiency.

Article and author information

Author details

  1. Hongyoon Choi

    Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  2. Yoori Choi

    Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  3. Kyu Wan Kim

    Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  4. Hyejin Kang

    Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  5. Do Won Hwang

    Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  6. E Edmund Kim

    Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  7. June-Key Chung

    Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  8. Dong Soo Lee

    Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
    For correspondence
    dsl@snu.ac.kr
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All the experimental procedures were approved by Institutional Animal Care and Use Committee at Seoul National University Hospital (IACUC Number 13-0224).

Copyright

© 2015, Choi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,854
    views
  • 379
    downloads
  • 26
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hongyoon Choi
  2. Yoori Choi
  3. Kyu Wan Kim
  4. Hyejin Kang
  5. Do Won Hwang
  6. E Edmund Kim
  7. June-Key Chung
  8. Dong Soo Lee
(2015)
Maturation of metabolic connectivity of the adolescent rat brain
eLife 4:e11571.
https://doi.org/10.7554/eLife.11571

Share this article

https://doi.org/10.7554/eLife.11571

Further reading

    1. Neuroscience
    Célian Bimbard, Flóra Takács ... Philip Coen
    Tools and Resources

    Electrophysiology has proven invaluable to record neural activity, and the development of Neuropixels probes dramatically increased the number of recorded neurons. These probes are often implanted acutely, but acute recordings cannot be performed in freely moving animals and the recorded neurons cannot be tracked across days. To study key behaviors such as navigation, learning, and memory formation, the probes must be implanted chronically. An ideal chronic implant should (1) allow stable recordings of neurons for weeks; (2) allow reuse of the probes after explantation; (3) be light enough for use in mice. Here, we present the ‘Apollo Implant’, an open-source and editable device that meets these criteria and accommodates up to two Neuropixels 1.0 or 2.0 probes. The implant comprises a ‘payload’ module which is attached to the probe and is recoverable, and a ‘docking’ module which is cemented to the skull. The design is adjustable, making it easy to change the distance between probes, the angle of insertion, and the depth of insertion. We tested the implant across eight labs in head-fixed mice, freely moving mice, and freely moving rats. The number of neurons recorded across days was stable, even after repeated implantations of the same probe. The Apollo implant provides an inexpensive, lightweight, and flexible solution for reusable chronic Neuropixels recordings.

    1. Neuroscience
    Georgin Jacob, RT Pramod, SP Arun
    Research Article

    Most visual tasks involve looking for specific object features. But we also often perform property-based tasks where we look for specific property in an image, such as finding an odd item, deciding if two items are same, or if an object has symmetry. How do we solve such tasks? These tasks do not fit into standard models of decision making because their underlying feature space and decision process is unclear. Using well-known principles governing multiple object representations, we show that displays with repeating elements can be distinguished from heterogeneous displays using a property we define as visual homogeneity. In behavior, visual homogeneity predicted response times on visual search, same-different and symmetry tasks. Brain imaging during visual search and symmetry tasks revealed that visual homogeneity was localized to a region in the object-selective cortex. Thus, property-based visual tasks are solved in a localized region in the brain by computing visual homogeneity.