Specialized areas for value updating and goal selection in the primate orbitofrontal cortex

Abstract

The macaque orbitofrontal cortex (OFC) is essential for selecting goals based on current, updated values of expected reward outcomes. As monkeys consume a given type of reward to satiety, its value diminishes, and OFC damage impairs the ability to shift goal choices away from devalued outcomes. To examine the contributions of OFC's components to goal selection, we reversibly inactivated either its anterior (area 11) or posterior (area 13) parts. We found that neurons in area 13 must be active during the selective satiation procedure to enable the updating of outcome valuations. After this updating has occurred, however, area 13 is not needed to select goals based on this knowledge. In contrast, neurons in area 11 do not need to be active during the value-updating process. Instead, inactivation of this area during choices causes an impairment. These findings demonstrate selective and complementary specializations within the OFC.

Article and author information

Author details

  1. Elisabeth A Murray

    Section on the Neurobiology of Learning and Memory, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, United States
    For correspondence
    murraye@mail.nih.gov
    Competing interests
    The authors declare that no competing interests exist.
  2. Emily J Moylan

    Section on the Neurobiology of Learning and Memory, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Kadharbatcha S Saleem

    Section on the Neurobiology of Learning and Memory, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Benjamin M Basile

    Section on the Neurobiology of Learning and Memory, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Janita Turchi

    Section on the Neurobiology of Learning and Memory, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All research was carried out in strict adherence to the laws and regulations of the U.S. Animal Welfare Act (USDA, 1990) and Public Health Service Policies (PHS, 2002), as well as nongovernmental recommendations of the National Research Council as published in the ILAR 'Guide for the Care and Use of Laboratory Animals'. All procedures were reviewed and approved by the National Institute of Mental Health Animal Care and Use Committee.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,713
    views
  • 370
    downloads
  • 84
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Elisabeth A Murray
  2. Emily J Moylan
  3. Kadharbatcha S Saleem
  4. Benjamin M Basile
  5. Janita Turchi
(2015)
Specialized areas for value updating and goal selection in the primate orbitofrontal cortex
eLife 4:e11695.
https://doi.org/10.7554/eLife.11695

Share this article

https://doi.org/10.7554/eLife.11695

Further reading

    1. Neuroscience
    Jacob A Miller
    Insight

    When navigating environments with changing rules, human brain circuits flexibly adapt how and where we retain information to help us achieve our immediate goals.

    1. Neuroscience
    Gáspár Oláh, Rajmund Lákovics ... Gábor Tamás
    Research Article

    Human-specific cognitive abilities depend on information processing in the cerebral cortex, where the neurons are significantly larger and their processes longer and sparser compared to rodents. We found that, in synaptically connected layer 2/3 pyramidal cells (L2/3 PCs), the delay in signal propagation from soma to soma is similar in humans and rodents. To compensate for the longer processes of neurons, membrane potential changes in human axons and/or dendrites must propagate faster. Axonal and dendritic recordings show that the propagation speed of action potentials (APs) is similar in human and rat axons, but the forward propagation of excitatory postsynaptic potentials (EPSPs) and the backward propagation of APs are 26 and 47% faster in human dendrites, respectively. Experimentally-based detailed biophysical models have shown that the key factor responsible for the accelerated EPSP propagation in human cortical dendrites is the large conductance load imposed at the soma by the large basal dendritic tree. Additionally, larger dendritic diameters and differences in cable and ion channel properties in humans contribute to enhanced signal propagation. Our integrative experimental and modeling study provides new insights into the scaling rules that help maintain information processing speed albeit the large and sparse neurons in the human cortex.