1. Genetics and Genomics
Download icon

Genetic variation in offspring indirectly influences the quality of maternal behaviour in mice

  1. David George Ashbrook  Is a corresponding author
  2. Beatrice Gini
  3. Reinmar Hager
  1. University of Manchester, United Kingdom
  2. University of Mancehster, United Kingdom
Research Article
  • Cited 19
  • Views 1,770
  • Annotations
Cite this article as: eLife 2015;4:e11814 doi: 10.7554/eLife.11814

Abstract

Conflict over parental investment between parent and offspring is predicted to lead to selection on genes expressed in offspring for traits influencing maternal investment, and on parentally expressed genes affecting offspring behaviour. However, the specific genetic variants that indirectly modify maternal or offspring behaviour remain largely unknown. Using a cross-fostered population of mice, we map maternal behaviour in genetically uniform mothers as a function of genetic variation in offspring and identify loci on offspring chromosomes 5 and 7 that modify maternal behaviour. Conversely, we found that genetic variation among mothers influences offspring development, independent of offspring genotype. Offspring solicitation and maternal behaviour show signs of coadaptation as they are negatively correlated between mothers and their biological offspring, which may be linked to costs of increased solicitation on growth found in our study. Overall, our results show levels of parental provisioning and offspring solicitation are unique to specific genotypes.

Article and author information

Author details

  1. David George Ashbrook

    Computational and Evolutionary Biology, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
    For correspondence
    david.ashbrook@postgrad.manchester.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  2. Beatrice Gini

    Computational and Evolutionary Biology, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Reinmar Hager

    Computational and Evolutionary Biology, Faculty of Life Sciences, University of Mancehster, Manchester, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All procedures were approved by the University of Manchester Ethics Committee.

Reviewing Editor

  1. Jonathan Flint, Wellcome Trust Centre for Human Genetics, United Kingdom

Publication history

  1. Received: September 23, 2015
  2. Accepted: December 17, 2015
  3. Accepted Manuscript published: December 23, 2015 (version 1)
  4. Version of Record published: February 9, 2016 (version 2)

Copyright

© 2015, Ashbrook et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,770
    Page views
  • 302
    Downloads
  • 19
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Genetics and Genomics
    2. Medicine
    Chiara Fallerini et al.
    Short Report

    Background: Recently, loss-of-function variants in TLR7 were identified in two families in which COVID-19 segregates like an X-linked recessive disorder environmentally conditioned by SARS-CoV-2. We investigated whether the two families represent the tip of the iceberg of a subset of COVID-19 male patients.

    Methods: This is a nested case-control study in which we compared male participants with extreme phenotype selected from the Italian GEN-COVID cohort of SARS-CoV-2-infected participants (<60y, 79 severe cases versus 77 control cases). We applied the LASSO Logistic Regression analysis, considering only rare variants on young male subsets with extreme phenotype, picking up TLR7 as the most important susceptibility gene.

    Results: Overall, we found TLR7 deleterious variants in 2.1% of severely affected males and in none of the asymptomatic participants. The functional gene expression profile analysis demonstrated a reduction in TLR7-related gene expression in patients compared with controls demonstrating an impairment in type I and II IFN responses.

    Conclusion: Young males with TLR7 loss-of-function variants and severe COVID-19 represent a subset of male patients contributing to disease susceptibility in up to 2% of severe COVID-19.

    1. Epidemiology and Global Health
    2. Genetics and Genomics
    William L Hamilton et al.
    Research Article

    COVID-19 poses a major challenge to care homes, as SARS-CoV-2 is readily transmitted and causes disproportionately severe disease in older people. Here, 1,167 residents from 337 care homes were identified from a dataset of 6,600 COVID-19 cases from the East of England. Older age and being a care home resident were associated with increased mortality. SARS-CoV-2 genomes were available for 700 residents from 292 care homes. By integrating genomic and temporal data, 409 viral clusters within the 292 homes were identified, indicating two different patterns - outbreaks among care home residents and independent introductions with limited onward transmission. Approximately 70% of residents in the genomic analysis were admitted to hospital during the study, providing extensive opportunities for transmission between care homes and hospitals. Limiting viral transmission within care homes should be a key target for infection control to reduce COVID-19 mortality in this population.