8 figures and 5 tables

Figures

Transitions in periodicity caused by insertions of one to six residues into the heptad repeat.

The green area marks the estimated boundaries of periodicities accessible to α-helical coiled coils. It is centered around the periodicity of unperturbed α-helices, about 3.63 residues per turn. Higher values than 3.63 lead to right-handed and lower values to left-handed supercoiling. The effects of consecutive insertions of stammers (3 residues) or stutters (4 residues) into a heptad pattern are shown by blue and green lines, respectively. The red lines correspond to the insertion of 1 to 6 residues into the heptad periodicity and their progressive delocalization over neighboring heptads. For example, an insertion of 4 residues is accommodated as 11 residues over 3 turns (11/3), when delocalized over one heptad, or as 18/5, when delocalized over two. Insertions of 1 or 5 residues have to be delocalized over two heptads, resulting in periodicities of 15/4 or 19/5 (which could also be brought about by consecutive stutters – following the green line from 7/2 over 11/3 over 15/4 to 19/5). Insertions of 3 can be accommodated as 10/3, at the very edge of the green area, although in the known examples the α-helices are distorted due to the strong left-handed supercoiling which could be avoided by further delocalization. For insertions of 2 or 6 residues (dashed lines) a strong delocalization would be required to reach the green lawn of accessible periodicities. However, for all constructs in this paper, this is not observed. Via the formation of β-layers these insertions sustain the heptad periodicity as unperturbed as possible.

https://doi.org/10.7554/eLife.11861.003
The β-layer in the Actionobacillus OMP100 stalk.

(A) The structure of the Actinobacillus OMP100 stalk construct is aligned with (B) its sequence and a periodicity plot. The area of the stammer is highlighted in pink, the three residues of the β-layer by a grey bar. This bar points to the β region of the Ramachandran plot (D), where all nine β-layer residues of the trimer are found. The close-ups show the (C) side and (E) top view in stereo, highlighting the β-layer interactions. The trimer is colored by chain, GCN4 adaptors in grey. The plot is smoothed over a window of three residues to mask local fluctuations. Empty regions of the Ramachandran plot are cropped.

https://doi.org/10.7554/eLife.11861.005
β-layers in 6- and 9-residue motifs between GCN4 adaptors.

(A) The sequences and structures of the GCN4-fusion constructs are shown together with (B) a Ramachandran plot of their backbone torsion angles and (C, D) their periodicities. In the structures, the inserts between the GCN4 adaptors are drawn with thick lines. Disturbances in the α-helical segments are highlighted in pink; the stutter in the A6 structure and the stammer in the T96 structure are also highlighted in pink in panels C and D. In the periodicity plots, all proteins are aligned on the β-layer and their coiled-coil registers are indicated. The plots are shown separately for β-layers forming nonads (C) and hexads (D). A glitch in the periodicity caused by the g/c position preceding β-layers in hexads is highlighted in pink in panel D. As in the previous figure, the periodicity plots are smoothed over a three-residue sliding window. The Ramachandran plot in panel B includes all structures except the kinked grey A9b structure; all residues of the β-layers are shown as red dots and all other residues as black dots. Again, empty regions of the Ramachandran plot are cropped.

https://doi.org/10.7554/eLife.11861.006
Superimposition of β-layers.

All structures of β-layers between GCN4 adaptors were superimposed on the actual β-layer elements. Superimpositions are shown separately for β-layers occurring (A) in nonads (T99, A9, A9b, A6) and (B) in hexads (T6, T96); the kinked A9b structure (grey in Figure 3) is omitted. Panel (C) shows all β-layers together. (D) Stereo view of the β-layer region in panel C, seen from the N-terminus. The structures are colored as in Figure 3.

https://doi.org/10.7554/eLife.11861.007
The α/β coiled coil in the Tcar0761 construct.

The two regions fused between GCN4 adaptors in our construct are shown in red on the full sequence of Tcar0761 (left). Next to the sequence, the structure is depicted as a Cα-trace and the four consecutive β-layers are enlarged. On the right, top views are shown, looking down the bundle from the N-terminus. As indicated by the arrows next to the side view, they show 1, 2, 3 or all 4 β-layers. At the bottom, the sequence of the construct is shown together with the assigned register.

https://doi.org/10.7554/eLife.11861.008
Sequence logos for β-layers in different protein families.

The sequence logos show the conservation patterns of β-layers and their adjacent secondary structure elements in domains of Trimeric Autotransporter Adhesins (stalk, neck, and two variants of the DALL domain), the DUF3782 family of prokaryotic endonucleases, the DUF1640 family of membrane proteins from prokaryotes and organelles, and the surface layer homology (SLH) domain of bacteria. Annotations of the secondary structure (α: helix, β: strand) and coiled-coil register are shown beneath the logos. Grey symbols on the sides indicate the type of secondary structure transition mediated by the β-layer.

https://doi.org/10.7554/eLife.11861.009
Gallery of canonical β-layers in proteins of known structure.

The parts of the structures containing β-layers are shown in side view (cartoon depiction, left) and the β-layers in top view (backbone trace, right), with their central (β2) residues in stick representation. Table 2 lists the detailed information for the presented proteins.

https://doi.org/10.7554/eLife.11861.010
Interaction networks of canonical β-layers.

The two distinct interaction networks of N-capping β-layers based on the sequence MATKDD and C-capping β-layers based on the sequence KADKAD are compared. The upper panels show the interactions at the first β-layer in the Tcar0761 structure and the β-layer in the A9 structure, both in top and side view. For clarity, the side views show only the interactions of the red chain. The lower panels show a schematic representation of the interactions: invariant backbone-to-backbone hydrogen bonds are drawn as bold lines, network-specific backbone-to-sidechain and sidechain-to-sidechain interactions are drawn as solid and broken lines, respectively. Grey lines indicate alternative/additional interactions which are not formed in the depicted β-layers but can be found in other instances as described in the main text. These interactions are indicated by loose grey broken lines in the side views.

https://doi.org/10.7554/eLife.11861.012

Tables

Table 1

Sequences of constructs and protein buffer composition.

https://doi.org/10.7554/eLife.11861.004
ConstructProtein sequenceFinal buffer
OMP100(GCN4-pII)N-IQNVDVR
STENAAR
SRANEQK
IAENKKA
IENKADKAD
VEKNRAD
IAANSRA
IATFRSSSQN
IAALTTK-(GCN4pII)c-KLHHHHHH
20 mM Tris pH 7.5,
400 mM NaCl,
5% Glycerol
Tcar0761(GCN4-N16V)N-ITLMQAN
–––MATKDD
LARMATKDD
IANMATKDD
IANMATKDD
IAKLDVK
IENLNTK-(GCN4-N16V)c-GSGHHHHHH
20 mM MOPS pH 7.2,
500 mM NaCl,
5% Glycerol,
2 M Urea
T6(6xH-TEV)-(GCN4-N16V)N-MATKDD-(GCN4-N16V)c20 mM HEPES pH 7.4,
50 mM NaCl,
5% Glycerol, 1 M Urea
T9(6xH-TEV)-(GCN4-N16V)N-MATKDDIAN-(GCN4-N16V)c20 mM HEPES pH 7.4,
50 mM NaCl,
5% Glycerol, 1 M Urea
A6(6xH-TEV)-(GCN4-N16V)N-IENKAD-(GCN4-N16V)c20 mM HEPES pH 7.4,
50 mM NaCl,
5% Glycerol, 1 M Urea
A7(6xH-TEV)-(GCN4-N16V)N-IENKKAD-(GCN4-N16V)c20 mM HEPES pH 7.4,
50 mM NaCl,
5% Glycerol, 1 M Urea
A9(6xH-TEV)-(GCN4-N16V)N-IENKADKAD-(GCN4-N16V)c20 mM HEPES pH 7.4,
50 mM NaCl,
5% Glycerol, 1 M Urea
A9b(6xH-TEV)-(GCN4-N16V)N-IANKEDKAD-(GCN4-N16V)c20 mM HEPES pH 7.5,
50 mM NaCl,
10% Glycerol, 1 M Urea
  1. (GCN4-pII)N‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ MKQIEDKIEEILSKIYHIENEIARIKKL

  2. (GCN4-pII)C‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ MKQIEDKIEEILSKIYHIENEIARIKKLI

  3. (GCN4-N16V)N‍ ‍ ‍ ‍ ‍ ‍ ‍ MKQLEMKVEELLSKVYHLENEVARLKKL

  4. (GCN4 N16V)C‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ MKQLEWKVEELLSKVYHLENEVARLKKLV

  5. (6xH-TEV)‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍‍‍MKHHHHHHPMSDYDIPTTENLYFQGH

Table 2

β-Layers in proteins of known structure.

https://doi.org/10.7554/eLife.11861.011
Cellular proteins (canonical)
PDBTypeProteinDomainSpeciesSequenceSimilar structures
2YO3cc-to-βSadATAA DALL1Salmonella enterica‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ abcdefgβββEEEECC
1306-LKASEAGSVRYETNAD-1321
3WPA, 3WPO, 3WPP, 3WQA (Acinetobacter sp. Tol5),
4USX (Burkholderia pseudomallei)
2YO2cc-to-βSadATAA DALL2Salmonella enterica‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ abcdefgβββEECCC
 ‍ 310-VAGLAEDALLWDESI-324
3ZMF, 2YNZ (Salmonella enterica)
2YO3β-to-ccSadATAA Short neckSalmonella enterica‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ EEEECCCβββefgabcdefghijklmno
1345-AAVNDTDAVNYAQLKRSVEEANTYTDQK-1372
4LGO (Bartonella quintana),
3WP8, 3WPA, 3WPR (Acinetobacter sp. Tol5),
1P9H (Yersinia enterocolitica),
2XQH (Escherichia coli),
3D9X (Bartonella henselae),
2YO0 (Salmonella enterica),
3S6L, 4USX (Burkholderia pseudomallei),
2GR7 (Haemophilus influenzae)
2YO2β-to-ccSadATAA Long neckSalmonella enterica‍‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ EEEEβββefgabcdefg
‍ ‍ 349-DSTDAVNGSQMKQIEDK-365
2YNZ, 3ZMF (Salmonella enterica),
3EMO (Haemophilus influenzae),
3LAA, 3LA9, 4USX (Burkholderia pseudomallei),
3WPA, 3WPO, 3WPP, 3WPR, 3WQA (Acinetobacter sp. Tol5),
3NTN, 3PR7 (Moraxella catarrhalis)
1S7Mβ-to-ccHiaTAA Insert neck 1Haemophilus influenzae‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ EEβββefgabc
‍ ‍ 642-NTAATVGDLRG-652
3EMF (Haemophilus influenzae)
4C47Nterm-to-ccSadB-Salmonella enterica‍ ‍ ‍ ‍ ‍‍ ‍ ‍ ‍ ‍ CCβββefgabcdefg
‍ ‍ ‍ ‍ 23-DYFADKHLVEEMKEQ-37
-
5APPcc-to-ccOMP100TAA StalkActinobacillus actinomycetemcomitans‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ abcdefgabcβββefgabcdefg
‍ ‍ 153-IAENKKAIENKADKADVEKNRAD-175
-
5APZcc-to-ccTcar0761DUF3782Thermosinus carboxydivorans‍ ‍ ‍ ‍ ‍ ‍‍ ‍ ‍ ‍ abcdefgβββefgabc
‍ ‍ ‍ 68-ITLMQANMATKDDLAR-83
-
2BA2Nterm-to-ccMPN010DUF16Mycoplasma pneumoniae‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ CCCβββefghijk
‍ ‍ ‍ ‍ ‍ ‍ 5-GTRYVTHKQLDEK-17
-
2BA2cc-to-ccMPN010DUF16Mycoplasma pneumoniae‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ hijkabcβββefgabcdefghijk
‍ ‍ ‍ 14-LDEKLKNFVTKTEFKEFQTVVMES-37
-
3PYWcoil-to-ccS-layer protein SapSLHBacillus anthracis‍ ‍‍ ‍ ‍ ‍ ‍ ‍ ‍ CCCCEβββefghijkabcdef
‍ ‍ ‍ 35-FEPGKELTRAEAATMMAQILN-55 ...
‍ ‍ ‍ 94-FEPNGKIDRVSMASLLVEAYK-114 ...
‍ 156-WEPKKTVTKAEAAQFIAKTDK-176
-
Phage and virus proteins (canonical)
2C3Fcc-to-ccTail fiber hyaluronidase-Streptococcus pyogenes (prophage SF370.1)‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ abcβββefghijkabcβββefgβββefghijk
‍ ‍ ‍ ‍ 69-IDGLATKVETAQKLQQKADKETVYTKAESKQE-99
2DP5 (Streptococcus pyogenes)
2C3Fcc-to-βTail fiber hyaluronidase-Streptococcus pyogenes (prophage SF370.1)‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ defgabcβββCEEEEE
‍ ‍ ‍ ‍ 97-SKQELDKKLNLKGGVM-112
2DP5 (Streptococcus pyogenes)
2C3Fβ-to-ccTail fiber hyaluronidaseTAA short neck homologStreptococcus pyogenes (prophage SF370.1)‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ EEEECCEβββefghijkabcdefg
‍ ‍ 310-DPTANDHAATKAYVDKAISELKKL-327
2DP5, 2WH7, 2WB3 (Streptococcus pyogenes)
4MTMcoil-to-ccgp53-Bacteriophage AP22‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ CCCCEβββefgabcdefg
‍ ‍ 155-NDVGSALSAAQGKVLNDK-172
-
1YU4β-to-ccMajor tropism determinant U1 variant (Mtd-U1)-Bordetella Phage BMP-1‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ CCCCEEβββefgab
‍ ‍ ‍ ‍ 41-TAGGFPLARHDLVK-54
-
1TSPcc-to-βTailspike proteinPhage P22-tailPhage P22‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ defghijkβββEEE
‍ ‍ 113-YSIEADKKFKYSVK-126
1CLW, 2XC1, 2VFM, 2VFP, 2VFQ, 2VFO, 2VFN [...] (Phage P22)
4OJP, 4OJ5, 4OJL [...] (E. coli Bacteriophage CBA120)
2V5I (Bacteriophage Det7),
2X3H (Enterobacteria phage K1-5)
2POHcc-to-βPhage P22 tail needle gp26-Phage P22‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ abcdefgβββCEEC
‍ ‍ 133-ISALQADYVSKTAT-146
3C9I, 4LIN, 4ZKP, 4ZKU, 5BU5, 5BU8, 5BVZ (Phage P22)
1H6Wβ-to-ccShort fiberReceptor binding domainBacteriophage T4‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ EEEEEECCEEβββefgabcde
‍ ‍ 321-MTGGYIQGKRVVTQNEIDRTI-341
1OCY, 1PDI, 2XGF, 2FKK, 2FL8 (Bacteriophage T4)
4A0Tcc-to-coilgp17gp37_CBacteriophage T7‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ cdefghijkβββCCCC
‍ ‍ 454-WLDAYLRDSFVAKSKA-469
4A0U (Bacteriophage T7)
1MG1α-to-ccMaltose-binding protein GP21TLV_coatPrimate T-lymphotrophic virus 1 (HTLV-1)‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ HHHHHHEβββefgabcdefghijk
‍ ‍ 364-AAQTNAAAMSLASGKSLLHEVDKD-387
-
3DUZcoil-to-ccGP64Baculo_gp64Autographa californica Multiple Nucleopolyhedrovirus‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ CCCβββefgabcdefg
‍ ‍ 293-EGDTATKGDLMHIQEE-308
-
4NKJNterm-to-ccHemagglutininHemagglutinin HA2Influenza B virus‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ Eβββefgabcdefghijk
‍ ‍ ‍ ‍ ‍ ‍ 4-VAADLKSTQEAINKITKN-21
1QU1 (Influenza A virus)
Unusual β-layer proteins
4NQJα-to-αTRIM Ubiquitin E3 ligaseDUF3583Homo sapiens‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ HHHHHHHβββHHHHHHH
 ‍ 143-SVGQSKEFLQISDAVHF-159
-
2F0C(cc-to-)coil-to-βReceptor binding protein (ORF49)-Lactophage tp901-1‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ abcdefgabCCCCβββCEEC
‍ ‍ ‍ ‍ 22-LEAINSELTSGGNVVHKTGD-41
3D8M, 3DA0 (Lactophage tp901-1)
1AA0(cc-to-)coil-to-βFibritinFibritin_CBacteriophage T4‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ abcdefgCβββEEEEE
‍ ‍ 450-VQALQEAGYIPEAPRD-465
1AVY, 2BSG, 2IBL, 2WW6, 2WW7, 3ALM (Bacteriophage T4),
5C0R (Influenza A),
2LP7 (Human Immunodeficiency Virus 1),
1NAY
2XGFcoil-to-coilLong tail fiber needle-Bacteriophage T4‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ EEEECCCCCCCCβββCCCCEEEE
‍ ‍ 934-EAWNGTGVGGNKMSSYAISYRAG-956
-
1H6Wcoil-to-coil-(to-β)Short fiber-Bacteriophage T4‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ CCCβββCCCCEEEEE
‍ ‍ 284-NADVIHQRGGQTING-298
-
4UXGβ-to-coilProximal long tail fibre protein gp34-Bacteriophage T4‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ EEEβββCCCCCC
1233-FVQVFDGGNPPQ-1244
-
4UXGα-to-coilProximal long tail fibre protein gp34-Bacteriophage T4‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ HHHHCβββCCCEEE
1245-PSDIGALPSDNATM-1258
-
3QC7α-to-coilHead fiber-Bacteriophage Phi29‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ HHHHHHHβββCCCCCCC
‍ ‍ 221-NLRTMIGAGVPYSLPAA-237
-
Table 3

Primers used in this study.

https://doi.org/10.7554/eLife.11861.013
ConstructPrimer
OMP100P omp1: 5`-GACCATGGTCTCCGATTCAGAACGTGGATGTGCGCAGCACCGAAAACGCGGCGCGCAGCCGCGCGAACGAACAG
P omp2: 5`-GCTTTATCCGCTTTGTTTTCAATCGCTTTTTTGTTTTCCGCAATTTTCTGTTCGTTCGCGCGGCTGC
P omp3: 5`-GAAAACAAAGCGGATAAAGCGGATGTGGAAAAAAACCGCGCGGATATTGCGGCGAACAGCCGCGCGATTGCGACCTTTCG
P omp4: 5`-GACCATGGTCTCCTCATTTTGGTGGTCAGCGCCGCAATGTTCTGGCTGCTGCTGCGAAAGGTCGCAATCGCGCG
pASK IBA GCN4 N16VP iba1: 5`-ACAAAAATCTAGATAACGAGGGCAAAAAATGAAACAGCTGGAAATGAAAGTTGAAGAACTGCTGTCCAAAGTCTACCACCTGGAAAACGA
P iba2: 5`-CTCGAGGGATCCCCGGGTACCGAGCTCGAATTCGGGACCATGGTCTCCCAGTTTTTTCAGACGCGCAACTTCGTTTTCCAGGTGGTAGAC
P iba3: 5`-GTACCCGGGGATCCCTCGAGAGGGGGACCATGGTCTCAATGAAACAGCTGGAATGGAAAGTTGAAGAACTGCTGTCCAAAGTCTACCACC
P iba4: 5`-CACAGGTCAAGCTTATTAGTGATGGTGATGGTGATGGCCAGAACCAACCAGTTTTTTCAGACGCGCAACTTCGTTTTCCAGGTGGTAGACTTTGGACAGC
T6T6 p1: 5`-GGAATTCCATATGAAGCAGCTGGAAGACAAGGTGGAGGAACTGTGTCCAAAGTGTACCATCTGGAAAACGAGGTGGCGCGTCTGAAGAAG
T6 p2: 5`-CTTGGACAGCAGTTCTTCCACCTTATCTTCCAGCTGCTTCAATCATCTTTGGTCGCCATCAGCTTCTTCAGACGCGCCACCTC
T6 p3: 5`-GGTGGAAGAACTGCTGTCCAAGGTGTATCATCTGGAGAATGAGTGGCGCGTCTGAAGAAGCTGGTGGGCGAACGCTGAGGATCCCG
T6 p4: 5`-CGGGATCCTCAGCGTTCGCCCACCAGCTTCTTCAGACGCGCCACTCATTCTCCAGATGATACACCTTGGACAGCAGTTCTTCCACC
T9T9 p1: 5`-GGAATTCCATATGAAGCAGCTGGAAGATAAGGTGGAAGAGCTGCTGTCAAAGTGTACCATCTGGAAAACGAAGTGGCGCGTCTGAAGAAG
T9 p2: 5`-CAGCAGTTCTTCCACCTTATCTTCCAGCTGCTTCATGTTCGCAATGTCATCTTTGGTCGCCATCAGCTTCTTCAGACGCGCCACTTC
T9 p3: 5`-GATAAGGTGGAAGAACTGCTGTCCAAAGTGTACCATCTGGAAAACGAAGTGGCGCGTCTGAAGAAACTGGTGGGCGAACGCTGAGGATCCCG
T9 p4: 5`-CGGGATCCTCAGCGTTCGCCCACCAGTTTCTTCAGACGCGCCACTTCGTTTTCCAGATGGTACACTTTGGACAGCAGTTCTTCCACCTTATC
A6A6 p1: 5`-GGAATTCCATATGAAGCAACTTGAAGACAAAGTCGAAGAGCTTCTCTCAAGTTTATCATCTTGAGAACGAAGTTGCTCGTCTTAAG
A6 p2: 5`-CCTTAGAAAGAAGTTCTTCGACCTTATCCTCAAGTTGCTTCATATCGCTTTGTCTCAATGAGTTTCTTAAGACGAGCAACTTCG
A6 p3: 5`-CGAAGAACTTCTTTCTAAGGTTTACCATCTCGAAAATGAGGTTGTCGTTCAGAAGCTTGTTGGCGAACGCTGAGGATCCCG
A6 p4: 5`-CGGGATCCTCAGCGTTCGCCAACAAGCTTCTTGAGACGAGCAACCCATTTCGAGATGGTAAACCTTAGAAAGAAGTTCTTCG
A7MP A6+K se: 5`-CTTAAGAAACTCATTGAGAACAAGAAAGCCGATATGAAGCAAC
MP A6+K as: 5`-GTTGCTTCATATCGGCTTTCTTGTTCTCAATGAGTTTCTTAAG
A9MP A6+KAD se: 5`-CATTGAGAACAAAGCCGATAAGGCTGACATGAAGCAACTTGAGG
MP A6+KAD as: 5`-CCTCAAGTTGCTTCATGTCAGCCTTATCGGCTTTGTTCTCAATG
Table 4

Crystallization and cryo condition.

https://doi.org/10.7554/eLife.11861.014
StructureProtein solution & concentrationReservoir solution (RS)Cryo solution
OMP
100
20 mM Tris pH 7.5, 150 mM NaCl,
3% (v/v) Glycerol, 3 mg/ml protein
0.1 M tri-Sodium citrate pH 5.5,
2% (v/v) Dioxane
15% (w/v) PEG 10,000
RS
+ 15% (v/v)
PEG 400
A620 mM HEPES pH 7.2, 50 mM NaCl,
2% (v/v) Glycerol, 1 M Urea,
15 mg/ml protein
95 mM tri-Sodium citrate pH 5.6,
19% (v/v) Isopropanol,
19% (w/v) PEG 4000,
5% (v/v) Glycerol
-
A720 mM HEPES pH 7.3, 50 mM NaCl,
1 M Urea, 15 mg/ml protein
0.1 M Citric acid pH 3.5,
3 M NaCl
-
A920 mM HEPES pH 7.2, 50 mM NaCl,
2% (v/v) Glycerol, 1,5 M Urea,
17 mg/ml protein
1.6 M tri-Sodium citrate pH 6.5-
A9b
black
50 mM HEPES, 50 mM NaCl,
1 M Urea, 7.5 mg/ml protein
2.4 M Sodium malonate pH 5.0-
A9b
grey
50 mM HEPES, 50 mM NaCl,
1 M Urea, 7.5 mg/ml protein
0.2 M Sodium citrate,
0.1 M Bis Tris propane pH 6.5, 20% (w/v) PEG 3350
-
T620 mM HEPES pH 7.2,
50 mM NaCl,
1 M Urea, 13 mg/ml protein
0.2 M CaCl2,
0.1 M HEPES pH 7.5,
30% (w/v) PEG 4000
-
T9620 mM HEPES pH 7.2, 50 mM NaCl,
2% (v/v) Glycerol, 1.5 M Urea,
15 mg/ml protein
0.2 M Ammonium phosphate,
0.1 M TRIS pH 8.5,
50% (v/v) MPD
-
T990.1 M Citric acid pH 5.0,
20% (v/v) Isopropanol
RS + 1 M Urea
+25% Glycerol
Tcar
0761
20 mM MOPS pH 7.2, 400 mM NaCl,
5% (v/v) Glycerol, 1.5 M Urea,
7 mg/ml protein
0.1 M tri-Sodium citrate pH 4.0,
30% (v/v) MPD
-
Table 5

Data collection and refinement statistics.

https://doi.org/10.7554/eLife.11861.015
StructureOMP100A6A7A9A9b blackA9b greyT6T96T99Tcar0761
Beamline/Detector*PXII / MPXII / MPXII / MPXIII / MPXII / PPXII / PPXII / PPXII / MPXIII / MPXII / P
Wavelength (Å)0.97861.01.01.01.01.01.01.01.01.0
Trimers/AU111/31121111/3
Space groupC2**C2**P321P21P21P21P21P21C2**P63
a (Å)62.160.438.265.226.271.134.225.160.837.9
b (Å)35.934.838.234.637.535.027.038.335.137.9
c (Å)198.5104.287.167.595.0106.2101.0105.0112.2179.2
β (°)96.0101.190117.792.6101.793.993.3100.490
Resolution range (Å)***32.9–2.30
(2.44–2.30)
30.0–2.10
(2.23–2.10)
18.2–1.37
(1.45–1.37)
33.7–1.80
(1.91–1.80)
34.9–1.35
(1.43–1.35)
38.1–2.00
(2.12–2.00)
34.1–1.60
(1.70–1.60)
34.9–1.80
(1.91–1.80)
19.5–2.00
(2.12–2.00)
32.3–1.60
(1.69–1.60)
Completeness (%)92.4 (86.5)97.3 (96.2)99.0 (98.6)98.9 (97.4)95.9 (92.1)92.4 (98.9)98.2 (96.1)97.1 (95.4)98.7 (97.5)99.2 (96.9)
Redundancy2.84 (2.52)3.71 (3.71)6.35 (6.33)3.70 (3.67)3.72 (3.47)3.29 (3.31)3.04 (2.89)3.94 (3.81)3.73 (3.73)3.69 (3.65)
I/σ(I)14.0 (1.88)15.5 (2.28)18.2 (2.52)14.3 (2.07)17.6 (2.10)13.9 (2.43)13.6 (2.33)14.5 (2.14)19.5 (2.25)20.3 (2.23)
Rmerge (%)4.2 (44.8)4.8 (62.1)5.1 (75.5)5.1 (61.7)3.4 (66.6)5.0 (51.5)4.4 (42.3)7.2 (71.7)4.0 (63.2)2.9 (60.2)
Rcryst (%)22.520.819.520.616.320.617.418.721.117.7
Rfree (%)25.425.123.825.619.925.320.522.625.521.3
PDB code5APP5APQ5APS5APT5APU5APV5APW5APX5APY5APZ
  1. *M = MARRESEARCH mar225 CCD detector; P = DECTRIS PILATUS 6M detector

  2. **twinned with apparent H32 symmetry and twinning operators

  3. 1/2*h-3/2*k,-1/2*h-1/2*k,-1/2*h+1/2*k-l and 1/2*h+3/2*k,1/2*h-1/2*k,-1/2*h-1/2*k-l

  4. ***values in parenthesis refer to the highest resolution shell

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Marcus D Hartmann
  2. Claudia T Mendler
  3. Jens Bassler
  4. Ioanna Karamichali
  5. Oswin Ridderbusch
  6. Andrei N Lupas
  7. Birte Hernandez Alvarez
(2016)
α/β coiled coils
eLife 5:e11861.
https://doi.org/10.7554/eLife.11861