1. Neuroscience
Download icon

Imaging a memory trace over half a life-time in the medial temporal lobe reveals a time-limited role of CA3 neurons in retrieval

  1. Vanessa Lux
  2. Erika Atucha
  3. Takashi Kitsukawa
  4. Magdalena M Sauvage  Is a corresponding author
  1. Ruhr University Bochum, Germany
  2. Osaka University, Japan
Research Article
  • Cited 13
  • Views 2,365
  • Annotations
Cite this article as: eLife 2016;5:e11862 doi: 10.7554/eLife.11862

Abstract

Whether retrieval still depends on the hippocampus as memories age or relies then on cortical areas remains a major controversy. Despite evidence for a functional segregation between CA1, CA3 and parahippocampal areas, their specific role within this frame is unclear. Especially, the contribution of CA3 is questionable as very remote memories might be too degraded to be used for pattern completion. To identify the specific role of these areas, we imaged brain activity in mice during retrieval of recent, early remote and very remote fear memories by detecting the immediate-early gene Arc. Investigating correlates of the memory trace over an extended period allowed us to report that, in contrast to CA1, CA3 is no longer recruited in very remote retrieval. Conversely, we showed that parahippocampal areas are then maximally engaged. These results suggest a shift from a greater contribution of the trisynaptic loop to the temporoammonic pathway for retrieval.

Article and author information

Author details

  1. Vanessa Lux

    Functional Architecture of Memory unit, Mercator Research Group, Medical Faculty, Ruhr University Bochum, Bochum, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Erika Atucha

    Functional Architecture of Memory unit, Mercator Research Group, Medical Faculty, Ruhr University Bochum, Bochum, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Takashi Kitsukawa

    Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Magdalena M Sauvage

    Functional Architecture of Memory unit, Mercator Research Group, Medical Faculty, Ruhr University Bochum, Bochum, Germany
    For correspondence
    magdalena.sauvage@gmail.com
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All procedures were approved by the Ruhr-Universität Bochum Institutional Animal Use Committee and the LANUV (8.87-51.04.20.09.323)

Reviewing Editor

  1. Upinder S Bhalla, National Centre for Biological Sciences, India

Publication history

  1. Received: September 24, 2015
  2. Accepted: February 9, 2016
  3. Accepted Manuscript published: February 12, 2016 (version 1)
  4. Version of Record published: March 15, 2016 (version 2)

Copyright

© 2016, Lux et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,365
    Page views
  • 672
    Downloads
  • 13
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Timothy S Balmer et al.
    Research Article Updated

    Synapses of glutamatergic mossy fibers (MFs) onto cerebellar unipolar brush cells (UBCs) generate slow excitatory (ON) or inhibitory (OFF) postsynaptic responses dependent on the complement of glutamate receptors expressed on the UBC’s large dendritic brush. Using mouse brain slice recording and computational modeling of synaptic transmission, we found that substantial glutamate is maintained in the UBC synaptic cleft, sufficient to modify spontaneous firing in OFF UBCs and tonically desensitize AMPARs of ON UBCs. The source of this ambient glutamate was spontaneous, spike-independent exocytosis from the MF terminal, and its level was dependent on activity of glutamate transporters EAAT1–2. Increasing levels of ambient glutamate shifted the polarity of evoked synaptic responses in ON UBCs and altered the phase of responses to in vivo-like synaptic activity. Unlike classical fast synapses, receptors at the UBC synapse are virtually always exposed to a significant level of glutamate, which varies in a graded manner during transmission.

    1. Developmental Biology
    2. Neuroscience
    Hiroki Takechi et al.
    Research Article

    Transmembrane protein Golden goal (Gogo) interacts with atypical cadherin Flamingo to direct R8 photoreceptor axons in the Drosophila visual system. However, the precise mechanisms underlying Gogo regulation during columnar- and layer-specific R8 axon targeting are unknown. Our studies demonstrated that the insulin secreted from surface and cortex glia switches the phosphorylation status of Gogo, thereby regulating its two distinct functions. Non-phosphorylated Gogo mediates the initial recognition of the glial protrusion in the center of the medulla column, whereas phosphorylated Gogo suppresses radial filopodia extension by counteracting Flamingo to maintain a one axon to one column ratio. Later, Gogo expression ceases during the midpupal stage, thus allowing R8 filopodia to extend vertically into the M3 layer. These results demonstrate that the long- and short-range signaling between the glia and R8 axon growth cones regulates growth cone dynamics in a stepwise manner, and thus shape the entire organization of the visual system.