1. Neuroscience
Download icon

Hippocampal ensemble dynamics timestamp events in long-term memory

  1. Alon Rubin
  2. Nitzan Geva
  3. Liron Sheintuch
  4. Yaniv Ziv  Is a corresponding author
  1. Weizmann Institute of Science, Israel
Short Report
  • Cited 102
  • Views 8,515
  • Annotations
Cite this article as: eLife 2015;4:e12247 doi: 10.7554/eLife.12247

Abstract

The capacity to remember temporal relationships between different events is essential to episodic memory, but little is currently known about its underlying mechanisms. We performed time-lapse imaging of thousands of neurons over weeks in the hippocampal CA1 of mice as they repeatedly visited two distinct environments. Longitudinal analysis exposed ongoing environment-independent evolution of episodic representations, despite stable place field locations and constant remapping between the two environments. These dynamics time-stamped experienced events via neuronal ensembles that had cellular composition and activity patterns unique to specific points in time. Temporally close episodes shared a common timestamp regardless of the spatial context in which they occurred. Temporally remote episodes had distinct timestamps, even if they occurred within the same spatial context. Our results suggest that days-scale hippocampal ensemble dynamics could support the formation of a mental timeline in which experienced events could be mnemonically associated or dissociated based on their temporal distance.

Article and author information

Author details

  1. Alon Rubin

    Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    No competing interests declared.
  2. Nitzan Geva

    Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    No competing interests declared.
  3. Liron Sheintuch

    Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    No competing interests declared.
  4. Yaniv Ziv

    Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
    For correspondence
    yaniv.ziv@weizmann.ac.il
    Competing interests
    Yaniv Ziv, Has ownership interests at Inscopix Inc.

Ethics

Animal experimentation: All animal work was approved by the Weizmann Institute institutional animal care and use committee (IACUC protocol 18030515-3).

Reviewing Editor

  1. Howard Eichenbaum, Boston University, United States

Publication history

  1. Received: October 12, 2015
  2. Accepted: December 17, 2015
  3. Accepted Manuscript published: December 18, 2015 (version 1)
  4. Version of Record published: January 28, 2016 (version 2)

Copyright

© 2015, Rubin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,515
    Page views
  • 2,016
    Downloads
  • 102
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

  1. Further reading

Further reading

    1. Neuroscience
    Lingjun Ding et al.
    Tools and Resources

    Neural circuits are made of a vast diversity of neuronal cell types. While immense progress has been made in classifying neurons based on morphological, molecular, and functional properties, understanding how this heterogeneity contributes to brain function during natural behavior has remained largely unresolved. In the present study, we combined the juxtacellular recording and labeling technique with optogenetics in freely moving mice. This allowed us to selectively target molecularly defined cell classes for in vivo single-cell recordings and morphological analysis. We validated this strategy in the CA1 region of the mouse hippocampus by restricting Channelrhodopsin expression to Calbindin-positive neurons. Directly versus indirectly light-activated neurons could be readily distinguished based on the latencies of light-evoked spikes, with juxtacellular labeling and post hoc histological analysis providing ‘ground-truth’ validation. Using these opto-juxtacellular procedures in freely moving mice, we found that Calbindin-positive CA1 pyramidal cells were weakly spatially modulated and conveyed less spatial information than Calbindin-negative neurons – pointing to pyramidal cell identity as a key determinant for neuronal recruitment into the hippocampal spatial map. Thus, our method complements current in vivo techniques by enabling optogenetic-assisted structure–function analysis of single neurons recorded during natural, unrestrained behavior.

    1. Neuroscience
    Valeria Oliva et al.
    Research Article

    Pain perception is decreased by shifting attentional focus away from a threatening event. This attentional analgesia engages parallel descending control pathways from anterior cingulate (ACC) to locus coeruleus, and ACC to periaqueductal grey (PAG) - rostral ventromedial medulla (RVM), indicating possible roles for noradrenergic or opioidergic neuromodulators. To determine which pathway modulates nociceptive activity in humans we used simultaneous whole brain-spinal cord pharmacological-fMRI (N=39) across three sessions. Noxious thermal forearm stimulation generated somatotopic-activation of dorsal horn (DH) whose activity correlated with pain report and mirrored attentional pain modulation. Activity in an adjacent cluster reported the interaction between task and noxious stimulus. Effective connectivity analysis revealed that ACC interacts with PAG and RVM to modulate spinal cord activity. Blocking endogenous opioids with Naltrexone impairs attentional analgesia and disrupts RVM-spinal and ACC-PAG connectivity. Noradrenergic augmentation with Reboxetine did not alter attentional analgesia. Cognitive pain modulation involves opioidergic ACC-PAG-RVM descending control which suppresses spinal nociceptive activity.