1. Neuroscience
Download icon

Hippocampal ensemble dynamics timestamp events in long-term memory

  1. Alon Rubin
  2. Nitzan Geva
  3. Liron Sheintuch
  4. Yaniv Ziv  Is a corresponding author
  1. Weizmann Institute of Science, Israel
Short Report
  • Cited 73
  • Views 7,387
  • Annotations
Cite this article as: eLife 2015;4:e12247 doi: 10.7554/eLife.12247

Abstract

The capacity to remember temporal relationships between different events is essential to episodic memory, but little is currently known about its underlying mechanisms. We performed time-lapse imaging of thousands of neurons over weeks in the hippocampal CA1 of mice as they repeatedly visited two distinct environments. Longitudinal analysis exposed ongoing environment-independent evolution of episodic representations, despite stable place field locations and constant remapping between the two environments. These dynamics time-stamped experienced events via neuronal ensembles that had cellular composition and activity patterns unique to specific points in time. Temporally close episodes shared a common timestamp regardless of the spatial context in which they occurred. Temporally remote episodes had distinct timestamps, even if they occurred within the same spatial context. Our results suggest that days-scale hippocampal ensemble dynamics could support the formation of a mental timeline in which experienced events could be mnemonically associated or dissociated based on their temporal distance.

Article and author information

Author details

  1. Alon Rubin

    Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    No competing interests declared.
  2. Nitzan Geva

    Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    No competing interests declared.
  3. Liron Sheintuch

    Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    No competing interests declared.
  4. Yaniv Ziv

    Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
    For correspondence
    yaniv.ziv@weizmann.ac.il
    Competing interests
    Yaniv Ziv, Has ownership interests at Inscopix Inc.

Ethics

Animal experimentation: All animal work was approved by the Weizmann Institute institutional animal care and use committee (IACUC protocol 18030515-3).

Reviewing Editor

  1. Howard Eichenbaum, Boston University, United States

Publication history

  1. Received: October 12, 2015
  2. Accepted: December 17, 2015
  3. Accepted Manuscript published: December 18, 2015 (version 1)
  4. Version of Record published: January 28, 2016 (version 2)

Copyright

© 2015, Rubin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,387
    Page views
  • 1,911
    Downloads
  • 73
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Ricardo M Santos, Anton Sirota
    Research Article Updated

    Cholinergic fast time-scale modulation of cortical physiology is critical for cognition, but direct local measurement of neuromodulators in vivo is challenging. Choline oxidase (ChOx)-based electrochemical biosensors have been used to capture fast cholinergic signals in behaving animals. However, these transients might be biased by local field potential and O2-evoked enzymatic responses. Using a novel Tetrode-based Amperometric ChOx (TACO) sensor, we performed highly sensitive and selective simultaneous measurement of ChOx activity (COA) and O2. In vitro and in vivo experiments, supported by mathematical modeling, revealed that non-steady-state enzyme responses to O2 give rise to phasic COA dynamics. This mechanism accounts for most of COA transients in the hippocampus, including those following locomotion bouts and sharp-wave/ripples. Our results suggest that it is unfeasible to probe phasic cholinergic signals under most behavioral paradigms with current ChOx biosensors. This confound is generalizable to any oxidase-based biosensor, entailing rigorous controls and new biosensor designs.

    1. Neuroscience
    Nina Rouhani, Yael Niv
    Research Article

    Memory helps guide behavior, but which experiences from the past are prioritized? Classic models of learning posit that events associated with unpredictable outcomes as well as, paradoxically, predictable outcomes, deploy more attention and learning for those events. Here, we test reinforcement learning and subsequent memory for those events, and treat signed and unsigned reward prediction errors (RPEs), experienced at the reward-predictive cue or reward outcome, as drivers of these two seemingly contradictory signals. By fitting reinforcement learning models to behavior, we find that both RPEs contribute to learning by modulating a dynamically changing learning rate. We further characterize the effects of these RPE signals on memory, and show that both signed and unsigned RPEs enhance memory, in line with midbrain dopamine and locus-coeruleus modulation of hippocampal plasticity, thereby reconciling separate findings in the literature.