The autophagy gene Atg16l1 differentially regulates Treg and TH2 cells to control intestinal inflammation

Abstract

A polymorphism in the autophagy gene Atg16l1 is associated with susceptibility to inflammatory bowel disease (IBD), however it remains unclear how autophagy contributes to intestinal immune homeostasis. Here, we demonstrate that autophagy is essential for maintenance of balanced CD4+ T cell responses in the intestine. Selective deletion of Atg16l1 in T cells in mice resulted in spontaneous intestinal inflammation that was characterised by aberrant type 2 responses to dietary and microbiota antigens, and by a loss of Foxp3+ Treg cells. Specific ablation of Atg16l1 in Foxp3+ Treg cells in mice demonstrated that autophagy directly promotes their survival and metabolic adaptation in the intestine. Moreover, we also identify an unexpected role for autophagy in directly limiting mucosal TH2 cell expansion. These findings provide new insights into the reciprocal control of distinct intestinal TH cell responses by autophagy, with important implications for understanding and treatment of chronic inflammatory disorders.

Article and author information

Author details

  1. Agnieszka Martyna Kabat

    Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Oliver James Harrison

    Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Thomas Riffelmacher

    MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Amin E Moghaddam

    Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Claire F Pearson

    Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Adam Laing

    Peter Gorer Dept Immunobiology, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Lucie Abeler-Dörner

    Peter Gorer Dept Immunobiology, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Simon P Forman

    Faculty of Life Sciences, The University of Manchester, Manchester, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Richard K Grencis

    Faculty of Life Sciences, The University of Manchester, Manchester, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Quentin Sattentau

    Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Anna Katharina Simon

    MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Johanna Pott

    Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  13. Kevin J Maloy

    Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
    For correspondence
    kevin.maloy@path.ox.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All procedures on mice in this study were conducted in accordance with the UK Scientific Procedures Act (1986) under a project license (PPL 30/2872) authorized by the UK Home Office Animal Procedures Committee and approved by the Sir William Dunn School of Pathology Local Ethical Review Committee.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 5,557
    views
  • 1,554
    downloads
  • 170
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Agnieszka Martyna Kabat
  2. Oliver James Harrison
  3. Thomas Riffelmacher
  4. Amin E Moghaddam
  5. Claire F Pearson
  6. Adam Laing
  7. Lucie Abeler-Dörner
  8. Simon P Forman
  9. Richard K Grencis
  10. Quentin Sattentau
  11. Anna Katharina Simon
  12. Johanna Pott
  13. Kevin J Maloy
(2016)
The autophagy gene Atg16l1 differentially regulates Treg and TH2 cells to control intestinal inflammation
eLife 5:e12444.
https://doi.org/10.7554/eLife.12444

Share this article

https://doi.org/10.7554/eLife.12444

Further reading

    1. Immunology and Inflammation
    Troy Burtchett, Neal Hammer
    Insight

    Specific host factors, such as immune cell activity, sex hormones and microbiota composition, influence the ability of Staphylococcus aureus bacteria to colonize the gut of mice.

    1. Immunology and Inflammation
    2. Neuroscience
    Jeremy M Shea, Saul A Villeda
    Research Article

    During aging, microglia – the resident macrophages of the brain – exhibit altered phenotypes and contribute to age-related neuroinflammation. While numerous hallmarks of age-related microglia have been elucidated, the progression from homeostasis to dysfunction during the aging process remains unresolved. To bridge this gap in knowledge, we undertook complementary cellular and molecular analyses of microglia in the mouse hippocampus across the adult lifespan and in the experimental aging model of heterochronic parabiosis. Single-cell RNA-Seq and pseudotime analysis revealed age-related transcriptional heterogeneity in hippocampal microglia and identified intermediate states of microglial aging that also emerge following heterochronic parabiosis. We tested the functionality of intermediate stress response states via TGFβ1 and translational states using pharmacological approaches in vitro to reveal their modulation of the progression to an activated state. Furthermore, we utilized single-cell RNA-Seq in conjunction with in vivo adult microglia-specific Tgfb1 conditional genetic knockout mouse models to demonstrate that microglia advancement through intermediate aging states drives transcriptional inflammatory activation and hippocampal-dependent cognitive decline.