1. Chromosomes and Gene Expression
Download icon

Cotranslational microRNA mediated messenger RNA destabilization

  1. Trinh To Tat
  2. Patricia A Maroney
  3. Sangpen Chamnongpol
  4. Jeff Coller
  5. Timothy W Nilsen  Is a corresponding author
  1. Case Western Reserve University, United States
  2. Affymetrix, Inc., United States
Research Article
  • Cited 17
  • Views 3,539
  • Annotations
Cite this article as: eLife 2016;5:e12880 doi: 10.7554/eLife.12880

Abstract

MicroRNAs are small (22 nucleotide) regulatory molecules that play important roles in a wide variety of biological processes. These RNAs, which bind to targeted mRNAs via limited base pairing interactions, act to reduce protein production from those mRNAs. Considerable evidence indicates that miRNAs destabilize targeted mRNAs by recruiting enzymes that function in normal mRNA decay and mRNA degradation is widely thought to occur when mRNAs are in a ribosome free state. Nevertheless, when examined, miRNA targeted mRNAs are invariably found to be polysome associated; observations that appear to be at face value incompatible with a simple decay model. Here, we provide evidence that turnover of miRNA-targeted mRNAs occurs while they are being translated. Cotranslational mRNA degradation is initiated by decapping and proceeds 5' to 3' behind the last translating ribosome. These results provide an explanation for a long standing mystery in the miRNA field.

Article and author information

Author details

  1. Trinh To Tat

    Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, United States
    Competing interests
    No competing interests declared.
  2. Patricia A Maroney

    Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, United States
    Competing interests
    No competing interests declared.
  3. Sangpen Chamnongpol

    Affymetrix, Inc., Cleveland, United States
    Competing interests
    No competing interests declared.
  4. Jeff Coller

    Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, United States
    Competing interests
    No competing interests declared.
  5. Timothy W Nilsen

    Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, United States
    For correspondence
    twn@case.edu
    Competing interests
    Timothy W Nilsen, Reviewing editor, eLife.

Reviewing Editor

  1. Douglas L Black, University of California, Los Angeles, United States

Publication history

  1. Received: November 7, 2015
  2. Accepted: April 7, 2016
  3. Accepted Manuscript published: April 8, 2016 (version 1)
  4. Version of Record published: May 6, 2016 (version 2)

Copyright

© 2016, Tat et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,539
    Page views
  • 968
    Downloads
  • 17
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Chromosomes and Gene Expression
    2. Microbiology and Infectious Disease
    Michele Felletti et al.
    Research Article

    The ability to regulate DNA replication initiation in response to changing nutrient conditions is an important feature of most cell types. In bacteria, DNA replication is triggered by the initiator protein DnaA, which has long been suggested to respond to nutritional changes; nevertheless, the underlying mechanisms remain poorly understood. Here, we report a novel mechanism that adjusts DnaA synthesis in response to nutrient availability in Caulobacter crescentus. By performing a detailed biochemical and genetic analysis of the dnaA mRNA, we identified a sequence downstream of the dnaA start codon that inhibits DnaA translation elongation upon carbon exhaustion. Our data show that the corresponding peptide sequence, but not the mRNA secondary structure or the codon choice, is critical for this response, suggesting that specific amino acids in the growing DnaA nascent chain tune translational efficiency. Our study provides new insights into DnaA regulation and highlights the importance of translation elongation as a regulatory target. We propose that translation regulation by nascent chain sequences, like the one described, might constitute a general strategy for modulating the synthesis rate of specific proteins under changing conditions.

    1. Chromosomes and Gene Expression
    2. Developmental Biology
    Benoit Roch et al.
    Research Article

    We developed a Xrcc4M61R separation of function mouse line to overcome the embryonic lethality of Xrcc4 deficient mice. XRCC4M61R protein does not interact with Xlf, thus obliterating XRCC4-Xlf filament formation while preserving the ability to stabilize DNA Ligase IV. X4M61R mice, which are DNA repair deficient, phenocopy the Nhej1-/- (known as Xlf -/-) setting with a minor impact on the development of the adaptive immune system. The core NHEJ DNA repair factor XRCC4 is therefore not mandatory for V(D)J recombination aside from its role in stabilizing DNA ligase IV. In contrast, Xrcc4M61R mice crossed on Paxx-/-, Nhej1-/-, or Atm-/- backgrounds are severely immunocompromised, owing to aborted V(D)J recombination as in Xlf-Paxx and Xlf-Atm double KO settings. Furthermore, massive apoptosis of post-mitotic neurons causes embryonic lethality of Xrcc4M61R -Nhej1-/- double mutants. These in vivo results reveal new functional interplays between XRCC4 and PAXX, ATM and Xlf in mouse development and provide new insights in the understanding of the clinical manifestations of human XRCC4 deficient condition, in particular its absence of immune deficiency.