Cotranslational microRNA mediated messenger RNA destabilization

  1. Trinh To Tat
  2. Patricia A Maroney
  3. Sangpen Chamnongpol
  4. Jeff Coller
  5. Timothy W Nilsen  Is a corresponding author
  1. Case Western Reserve University, United States
  2. Affymetrix, Inc., United States

Abstract

MicroRNAs are small (22 nucleotide) regulatory molecules that play important roles in a wide variety of biological processes. These RNAs, which bind to targeted mRNAs via limited base pairing interactions, act to reduce protein production from those mRNAs. Considerable evidence indicates that miRNAs destabilize targeted mRNAs by recruiting enzymes that function in normal mRNA decay and mRNA degradation is widely thought to occur when mRNAs are in a ribosome free state. Nevertheless, when examined, miRNA targeted mRNAs are invariably found to be polysome associated; observations that appear to be at face value incompatible with a simple decay model. Here, we provide evidence that turnover of miRNA-targeted mRNAs occurs while they are being translated. Cotranslational mRNA degradation is initiated by decapping and proceeds 5' to 3' behind the last translating ribosome. These results provide an explanation for a long standing mystery in the miRNA field.

Article and author information

Author details

  1. Trinh To Tat

    Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, United States
    Competing interests
    No competing interests declared.
  2. Patricia A Maroney

    Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, United States
    Competing interests
    No competing interests declared.
  3. Sangpen Chamnongpol

    Affymetrix, Inc., Cleveland, United States
    Competing interests
    No competing interests declared.
  4. Jeff Coller

    Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, United States
    Competing interests
    No competing interests declared.
  5. Timothy W Nilsen

    Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, United States
    For correspondence
    twn@case.edu
    Competing interests
    Timothy W Nilsen, Reviewing editor, eLife.

Copyright

© 2016, Tat et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,989
    views
  • 1,010
    downloads
  • 36
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Trinh To Tat
  2. Patricia A Maroney
  3. Sangpen Chamnongpol
  4. Jeff Coller
  5. Timothy W Nilsen
(2016)
Cotranslational microRNA mediated messenger RNA destabilization
eLife 5:e12880.
https://doi.org/10.7554/eLife.12880

Share this article

https://doi.org/10.7554/eLife.12880

Further reading

    1. Chromosomes and Gene Expression
    2. Neuroscience
    Robyn D Moir, Emilio Merheb ... Ian M Willis
    Research Article

    Pathogenic variants in subunits of RNA polymerase (Pol) III cause a spectrum of Polr3-related neurodegenerative diseases including 4H leukodystrophy. Disease onset occurs from infancy to early adulthood and is associated with a variable range and severity of neurological and non-neurological features. The molecular basis of Polr3-related disease pathogenesis is unknown. We developed a postnatal whole-body mouse model expressing pathogenic Polr3a mutations to examine the molecular mechanisms by which reduced Pol III transcription results primarily in central nervous system phenotypes. Polr3a mutant mice exhibit behavioral deficits, cerebral pathology and exocrine pancreatic atrophy. Transcriptome and immunohistochemistry analyses of cerebra during disease progression show a reduction in most Pol III transcripts, induction of innate immune and integrated stress responses and cell-type-specific gene expression changes reflecting neuron and oligodendrocyte loss and microglial activation. Earlier in the disease when integrated stress and innate immune responses are minimally induced, mature tRNA sequencing revealed a global reduction in tRNA levels and an altered tRNA profile but no changes in other Pol III transcripts. Thus, changes in the size and/or composition of the tRNA pool have a causal role in disease initiation. Our findings reveal different tissue- and brain region-specific sensitivities to a defect in Pol III transcription.

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Ting-Wen Chen, Hsiao-Wei Liao ... Chung-Te Chang
    Research Article

    The mRNA 5'-cap structure removal by the decapping enzyme DCP2 is a critical step in gene regulation. While DCP2 is the catalytic subunit in the decapping complex, its activity is strongly enhanced by multiple factors, particularly DCP1, which is the major activator in yeast. However, the precise role of DCP1 in metazoans has yet to be fully elucidated. Moreover, in humans, the specific biological functions of the two DCP1 paralogs, DCP1a and DCP1b, remain largely unknown. To investigate the role of human DCP1, we generated cell lines that were deficient in DCP1a, DCP1b, or both to evaluate the importance of DCP1 in the decapping machinery. Our results highlight the importance of human DCP1 in decapping process and show that the EVH1 domain of DCP1 enhances the mRNA-binding affinity of DCP2. Transcriptome and metabolome analyses outline the distinct functions of DCP1a and DCP1b in human cells, regulating specific endogenous mRNA targets and biological processes. Overall, our findings provide insights into the molecular mechanism of human DCP1 in mRNA decapping and shed light on the distinct functions of its paralogs.