Endocannabinoid dynamics gate spike-timing dependent depression and potentiation

  1. Yihui Cui
  2. Ilya Prokin
  3. Hao Xu
  4. Bruno Delord
  5. Stephane Genet
  6. Laurent Venance
  7. Hugues Berry  Is a corresponding author
  1. College de France, France
  2. French Institute for Research in Computer Science and Automation, France
  3. University Pierre et Marie Curie, France

Abstract

Synaptic plasticity is a cardinal cellular mechanism for learning and memory. The endocannabinoid (eCB) system has emerged as a pivotal pathway for synaptic plasticity because of its widely characterized ability to depress synaptic transmission on short- and long-term scales. Recent reports indicate that eCBs also mediate potentiation of the synapse. However it is not known how eCB signaling may support bidirectionality. Here, we combined electrophysiology experiments with mathematical modeling to question the mechanisms of eCB bidirectionality in spike-timing dependent plasticity (STDP) at corticostriatal synapses. We demonstrate that STDP outcome is controlled by eCB levels and dynamics: prolonged and moderate levels of eCB lead to eCB-mediated long-term depression (eCB-tLTD) while short and large eCB transients produce eCB-mediated long-term potentiation (eCB-tLTP). Moreover, we show that eCB-tLTD requires active calcineurin whereas eCB-tLTP necessitates the activity of presynaptic PKA. Therefore, just like glutamate or GABA, eCB form a bidirectional system to encode learning and memory.

Article and author information

Author details

  1. Yihui Cui

    Center for Interdisciplinary Research in Biology, College de France, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Ilya Prokin

    French Institute for Research in Computer Science and Automation, Villeurbanne, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Hao Xu

    Center for Interdisciplinary Research in Biology, College de France, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Bruno Delord

    University Pierre et Marie Curie, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Stephane Genet

    University Pierre et Marie Curie, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Laurent Venance

    Center for Interdisciplinary Research in Biology, College de France, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Hugues Berry

    French Institute for Research in Computer Science and Automation, Villeurbanne, France
    For correspondence
    hugues.berry@inria.fr
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All experiments were performed in accordance with local animal welfare committee (Center for Interdisciplinary Research in Biology and EU guidelines, directive 2010/63/EU).

Copyright

© 2016, Cui et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,356
    views
  • 615
    downloads
  • 58
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yihui Cui
  2. Ilya Prokin
  3. Hao Xu
  4. Bruno Delord
  5. Stephane Genet
  6. Laurent Venance
  7. Hugues Berry
(2016)
Endocannabinoid dynamics gate spike-timing dependent depression and potentiation
eLife 5:e13185.
https://doi.org/10.7554/eLife.13185

Share this article

https://doi.org/10.7554/eLife.13185

Further reading

    1. Neuroscience
    Sven Ohl, Martin Rolfs
    Research Article

    Detecting causal relations structures our perception of events in the world. Here, we determined for visual interactions whether generalized (i.e. feature-invariant) or specialized (i.e. feature-selective) visual routines underlie the perception of causality. To this end, we applied a visual adaptation protocol to assess the adaptability of specific features in classical launching events of simple geometric shapes. We asked observers to report whether they observed a launch or a pass in ambiguous test events (i.e. the overlap between two discs varied from trial to trial). After prolonged exposure to causal launch events (the adaptor) defined by a particular set of features (i.e. a particular motion direction, motion speed, or feature conjunction), observers were less likely to see causal launches in subsequent ambiguous test events than before adaptation. Crucially, adaptation was contingent on the causal impression in launches as demonstrated by a lack of adaptation in non-causal control events. We assessed whether this negative aftereffect transfers to test events with a new set of feature values that were not presented during adaptation. Processing in specialized (as opposed to generalized) visual routines predicts that the transfer of visual adaptation depends on the feature similarity of the adaptor and the test event. We show that the negative aftereffects do not transfer to unadapted launch directions but do transfer to launch events of different speeds. Finally, we used colored discs to assign distinct feature-based identities to the launching and the launched stimulus. We found that the adaptation transferred across colors if the test event had the same motion direction as the adaptor. In summary, visual adaptation allowed us to carve out a visual feature space underlying the perception of causality and revealed specialized visual routines that are tuned to a launch’s motion direction.

    1. Neuroscience
    Gergely F Turi, Sasa Teng ... Yueqing Peng
    Research Article

    Synchronous neuronal activity is organized into neuronal oscillations with various frequency and time domains across different brain areas and brain states. For example, hippocampal theta, gamma, and sharp wave oscillations are critical for memory formation and communication between hippocampal subareas and the cortex. In this study, we investigated the neuronal activity of the dentate gyrus (DG) with optical imaging tools during sleep-wake cycles in mice. We found that the activity of major glutamatergic cell populations in the DG is organized into infraslow oscillations (0.01–0.03 Hz) during NREM sleep. Although the DG is considered a sparsely active network during wakefulness, we found that 50% of granule cells and about 25% of mossy cells exhibit increased activity during NREM sleep, compared to that during wakefulness. Further experiments revealed that the infraslow oscillation in the DG was correlated with rhythmic serotonin release during sleep, which oscillates at the same frequency but in an opposite phase. Genetic manipulation of 5-HT receptors revealed that this neuromodulatory regulation is mediated by Htr1a receptors and the knockdown of these receptors leads to memory impairment. Together, our results provide novel mechanistic insights into how the 5-HT system can influence hippocampal activity patterns during sleep.