Endocannabinoid dynamics gate spike-timing dependent depression and potentiation

  1. Yihui Cui
  2. Ilya Prokin
  3. Hao Xu
  4. Bruno Delord
  5. Stephane Genet
  6. Laurent Venance
  7. Hugues Berry  Is a corresponding author
  1. College de France, France
  2. French Institute for Research in Computer Science and Automation, France
  3. University Pierre et Marie Curie, France

Abstract

Synaptic plasticity is a cardinal cellular mechanism for learning and memory. The endocannabinoid (eCB) system has emerged as a pivotal pathway for synaptic plasticity because of its widely characterized ability to depress synaptic transmission on short- and long-term scales. Recent reports indicate that eCBs also mediate potentiation of the synapse. However it is not known how eCB signaling may support bidirectionality. Here, we combined electrophysiology experiments with mathematical modeling to question the mechanisms of eCB bidirectionality in spike-timing dependent plasticity (STDP) at corticostriatal synapses. We demonstrate that STDP outcome is controlled by eCB levels and dynamics: prolonged and moderate levels of eCB lead to eCB-mediated long-term depression (eCB-tLTD) while short and large eCB transients produce eCB-mediated long-term potentiation (eCB-tLTP). Moreover, we show that eCB-tLTD requires active calcineurin whereas eCB-tLTP necessitates the activity of presynaptic PKA. Therefore, just like glutamate or GABA, eCB form a bidirectional system to encode learning and memory.

Article and author information

Author details

  1. Yihui Cui

    Center for Interdisciplinary Research in Biology, College de France, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Ilya Prokin

    French Institute for Research in Computer Science and Automation, Villeurbanne, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Hao Xu

    Center for Interdisciplinary Research in Biology, College de France, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Bruno Delord

    University Pierre et Marie Curie, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Stephane Genet

    University Pierre et Marie Curie, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Laurent Venance

    Center for Interdisciplinary Research in Biology, College de France, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Hugues Berry

    French Institute for Research in Computer Science and Automation, Villeurbanne, France
    For correspondence
    hugues.berry@inria.fr
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All experiments were performed in accordance with local animal welfare committee (Center for Interdisciplinary Research in Biology and EU guidelines, directive 2010/63/EU).

Copyright

© 2016, Cui et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,350
    views
  • 614
    downloads
  • 58
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yihui Cui
  2. Ilya Prokin
  3. Hao Xu
  4. Bruno Delord
  5. Stephane Genet
  6. Laurent Venance
  7. Hugues Berry
(2016)
Endocannabinoid dynamics gate spike-timing dependent depression and potentiation
eLife 5:e13185.
https://doi.org/10.7554/eLife.13185

Share this article

https://doi.org/10.7554/eLife.13185

Further reading

    1. Neuroscience
    Agnieszka Glica, Katarzyna Wasilewska ... Katarzyna Jednoróg
    Research Article

    The neural noise hypothesis of dyslexia posits an imbalance between excitatory and inhibitory (E/I) brain activity as an underlying mechanism of reading difficulties. This study provides the first direct test of this hypothesis using both electroencephalography (EEG) power spectrum measures in 120 Polish adolescents and young adults (60 with dyslexia, 60 controls) and glutamate (Glu) and gamma-aminobutyric acid (GABA) concentrations from magnetic resonance spectroscopy (MRS) at 7T MRI scanner in half of the sample. Our results, supported by Bayesian statistics, show no evidence of E/I balance differences between groups, challenging the hypothesis that cortical hyperexcitability underlies dyslexia. These findings suggest that alternative mechanisms must be explored and highlight the need for further research into the E/I balance and its role in neurodevelopmental disorders.

    1. Neuroscience
    David C Williams, Amanda Chu ... Michael A McDannald
    Research Advance

    Recognizing and responding to threat cues is essential to survival. Freezing is a predominant threat behavior in rats. We have recently shown that a threat cue can organize diverse behaviors beyond freezing, including locomotion (Chu et al., 2024). However, that experimental design was complex, required many sessions, and had rats receive many foot shock presentations. Moreover, the findings were descriptive. Here, we gave female and male Long Evans rats cue light illumination paired or unpaired with foot shock (8 total) in a conditioned suppression setting, using a range of shock intensities (0.15, 0.25, 0.35, or 0.50 mA). We found that conditioned suppression was only observed at higher foot shock intensities (0.35 mA and 0.50 mA). We constructed comprehensive temporal ethograms by scoring 22,272 frames across 12 behavior categories in 200-ms intervals around cue light illumination. The 0.50 mA and 0.35 mA shock-paired visual cues suppressed reward seeking, rearing, and scaling, as well as light-directed rearing and light-directed scaling. The shock-paired visual cue further elicited locomotion and freezing. Linear discriminant analyses showed that ethogram data could accurately classify rats into paired and unpaired groups. Using complete ethogram data produced superior classification compared to behavior subsets, including an Immobility subset featuring freezing. The results demonstrate diverse threat behaviors – in a short and simple procedure – containing sufficient information to distinguish the visual fear conditioning status of individual rats.