Nanoscale dynamics of synaptic vesicle trafficking and fusion at the presynaptic active zone

  1. Thirumalini Vaithianathan
  2. Diane Henry
  3. Wendy Akmentin
  4. Gary Matthews  Is a corresponding author
  1. Stony Brook University, United States

Abstract

The cytomatrix at the active zone (CAZ) is a macromolecular complex that facilitates the supply of release-ready synaptic vesicles to support neurotransmitter release at synapses. To reveal the dynamics of this supply process in living synapses, we used super-resolution imaging to track single vesicles at voltage-clamped presynaptic terminals of retinal bipolar neurons, whose CAZ contains a specialized structure-the synaptic ribbon-that supports both fast, transient and slow, sustained modes of transmission. We find that the synaptic ribbon serves a dual function as a conduit for diffusion of synaptic vesicles and a platform for vesicles to fuse distal to the plasma membrane itself, via compound fusion. The combination of these functions allows the ribbon-type CAZ to achieve the continuous transmitter release required by synapses of neurons that carry tonic, graded visual signals in the retina.

Article and author information

Author details

  1. Thirumalini Vaithianathan

    Department of Neurobiology and Behavior, Stony Brook University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Diane Henry

    Department of Neurobiology and Behavior, Stony Brook University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Wendy Akmentin

    Department of Neurobiology and Behavior, Stony Brook University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Gary Matthews

    Department of Neurobiology and Behavior, Stony Brook University, New York, United States
    For correspondence
    Gary.G.Matthews@stonybrook.edu
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All animal procedures were in accord with NIH guidelines and followed protocol 247885 approved by the Institutional Animal Care and Use Committee of Stony Brook University.

Copyright

© 2016, Vaithianathan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,690
    views
  • 672
    downloads
  • 41
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Thirumalini Vaithianathan
  2. Diane Henry
  3. Wendy Akmentin
  4. Gary Matthews
(2016)
Nanoscale dynamics of synaptic vesicle trafficking and fusion at the presynaptic active zone
eLife 5:e13245.
https://doi.org/10.7554/eLife.13245

Share this article

https://doi.org/10.7554/eLife.13245

Further reading

    1. Neuroscience
    Bharath Krishnan, Noah Cowan
    Insight

    Mice can generate a cognitive map of an environment based on self-motion signals when there is a fixed association between their starting point and the location of their goal.

    1. Neuroscience
    Juan Carlos Boffi, Brice Bathellier ... Robert Prevedel
    Research Article

    Sound location coding has been extensively studied at the central nucleus of the mammalian inferior colliculus (CNIC), supporting a population code. However, this population code has not been extensively characterized on the single-trial level with simultaneous recordings or at other anatomical regions like the dorsal cortex of inferior colliculus (DCIC), which is relevant for learning-induced experience dependent plasticity. To address these knowledge gaps, here we made in two complementary ways large-scale recordings of DCIC populations from awake mice in response to sounds delivered from 13 different frontal horizontal locations (azimuths): volumetric two-photon calcium imaging with ~700 cells simultaneously recorded at a relatively low temporal resolution, and high-density single-unit extracellular recordings with ~20 cells simultaneously recorded at a high temporal resolution. Independent of the method, the recorded DCIC population responses revealed substantial trial-to-trial variation (neuronal noise) which was significantly correlated across pairs of neurons (noise correlations) in the passively listening condition. Nevertheless, decoding analysis supported that these noisy response patterns encode sound location on the single-trial basis, reaching errors that match the discrimination ability of mice. The detected noise correlations contributed to minimize the error of the DCIC population code of sound azimuth. Altogether these findings point out that DCIC can encode sound location in a similar format to what has been proposed for CNIC, opening exciting questions about how noise correlations could shape this code in the context of cortico-collicular input and experience-dependent plasticity.