A circuit mechanism for the propagation of waves of muscle contraction in Drosophila

  1. Akira Fushiki
  2. Maarten F Zwart
  3. Hiroshi Kohsaka
  4. Richard D Fetter
  5. Albert Cardona
  6. Akinao Nose  Is a corresponding author
  1. University of Tokyo, Japan
  2. Janelia Research Campus, Howard Hughes Medical Institute, United States

Abstract

Animals move by adaptively coordinating the sequential activation of muscles. The circuit mechanisms underlying coordinated locomotion are poorly understood. Here, we report on a novel circuit for propagation of waves of muscle contraction, using the peristaltic locomotion of Drosophila larvae as a model system. We found an intersegmental chain of synaptically connected neurons, alternating excitatory and inhibitory, necessary for wave propagation and active in phase with the wave. The excitatory neurons (A27h) are premotor and necessary only for forward locomotion, and are modulated by stretch receptors and descending inputs. The inhibitory neurons (GDL) are necessary for both forward and backward locomotion, suggestive of different yet coupled central pattern generators, and its inhibition is necessary for wave propagation. The circuit structure and functional imaging indicated that the commands to contract one segment promote the relaxation of the next segment, revealing a mechanism for wave propagation in peristaltic locomotion.

Article and author information

Author details

  1. Akira Fushiki

    Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  2. Maarten F Zwart

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Hiroshi Kohsaka

    Department of Complexity Science and Engineering, University of Tokyo, Kashiwa, Chiba, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Richard D Fetter

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Albert Cardona

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Akinao Nose

    Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
    For correspondence
    nose@k.u-tokyo.ac.jp
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2016, Fushiki et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,177
    views
  • 1,311
    downloads
  • 146
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Akira Fushiki
  2. Maarten F Zwart
  3. Hiroshi Kohsaka
  4. Richard D Fetter
  5. Albert Cardona
  6. Akinao Nose
(2016)
A circuit mechanism for the propagation of waves of muscle contraction in Drosophila
eLife 5:e13253.
https://doi.org/10.7554/eLife.13253

Share this article

https://doi.org/10.7554/eLife.13253

Further reading

    1. Developmental Biology
    2. Neuroscience
    Ev L Nichols, Joo Lee, Kang Shen
    Research Article

    During development axons undergo long-distance migrations as instructed by guidance molecules and their receptors, such as UNC-6/Netrin and UNC-40/DCC. Guidance cues act through long-range diffusive gradients (chemotaxis) or local adhesion (haptotaxis). However, how these discrete modes of action guide axons in vivo is poorly understood. Using time-lapse imaging of axon guidance in C. elegans, we demonstrate that UNC-6 and UNC-40 are required for local adhesion to an intermediate target and subsequent directional growth. Exogenous membrane-tethered UNC-6 is sufficient to mediate adhesion but not directional growth, demonstrating the separability of haptotaxis and chemotaxis. This conclusion is further supported by the endogenous UNC-6 distribution along the axon’s route. The intermediate and final targets are enriched in UNC-6 and separated by a ventrodorsal UNC-6 gradient. Continuous growth through the gradient requires UNC-40, which recruits UNC-6 to the growth cone tip. Overall, these data suggest that UNC-6 stimulates stepwise haptotaxis and chemotaxis in vivo.

    1. Neuroscience
    Sainan Liu, Jiepin Huang ... Yan Yang
    Research Article

    Social relationships guide individual behavior and ultimately shape the fabric of society. Primates exhibit particularly complex, differentiated, and multidimensional social relationships, which form interwoven social networks, reflecting both individual social tendencies and specific dyadic interactions. How the patterns of behavior that underlie these social relationships emerge from moment-to-moment patterns of social information processing remains unclear. Here, we assess social relationships among a group of four monkeys, focusing on aggression, grooming, and proximity. We show that individual differences in social attention vary with individual differences in patterns of general social tendencies and patterns of individual engagement with specific partners. Oxytocin administration altered social attention and its relationship to both social tendencies and dyadic relationships, particularly grooming and aggression. Our findings link the dynamics of visual information sampling to the dynamics of primate social networks.