Bias in the reporting of sex and age in biomedical research on mouse models

Abstract

In animal-based biomedical research, both the sex and the age of the animals studied affect disease phenotypes by modifying their susceptibility, presentation and response to treatment. The accurate reporting of experimental methods and materials, including the sex and age of animals, is essential so that other researchers can build on the results of such studies. Here we use text mining to study 15,311 research papers in which mice were the focus of the study. We find that the percentage of papers reporting the sex and age of mice has increased over the past two decades: however, only about 50% of the papers published in 2014 reported these two variables. We also compared the quality of reporting in six preclinical research areas and found evidence for different levels of sex-bias in these areas: the strongest male-bias was observed in cardiovascular disease models and the strongest female-bias was found in infectious disease models. These results demonstrate the ability of text mining to contribute to the ongoing debate about the reproducibility of research, and confirm the need to continue efforts to improve the reporting of experimental methods and materials.

Article and author information

Author details

  1. Oscar Flórez-Vargas

    Bio-health Informatics Group, School of Computer Science, The University of Manchester, Manchester, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Andy Brass

    Bio-health Informatics Group, School of Computer Science, The University of Manchester, Manchester, United Kingdom
    For correspondence
    andy.brass@manchester.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  3. George Karystianis

    Text Mining Group, School of Computer Science, The University of Manchester, Manchester, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Michael Bramhall

    Bio-health Informatics Group, School of Computer Science, The University of Manchester, Manchester, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Robert Stevens

    Bio-health Informatics Group, School of Computer Science, The University of Manchester, Manchester, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Sheena Cruickshank

    Manchester Immunology Group, Faculty of Life Science, The University of Manchester, Manchester, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Goran Nenadic

    Text Mining Group, School of Computer Science, The University of Manchester, Manchester, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Chris Mungall

Publication history

  1. Received: December 8, 2015
  2. Accepted: February 23, 2016
  3. Accepted Manuscript published: March 3, 2016 (version 1)
  4. Version of Record published: March 24, 2016 (version 2)

Copyright

© 2016, Flórez-Vargas et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,682
    Page views
  • 652
    Downloads
  • 65
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Oscar Flórez-Vargas
  2. Andy Brass
  3. George Karystianis
  4. Michael Bramhall
  5. Robert Stevens
  6. Sheena Cruickshank
  7. Goran Nenadic
(2016)
Bias in the reporting of sex and age in biomedical research on mouse models
eLife 5:e13615.
https://doi.org/10.7554/eLife.13615
  1. Further reading

Further reading

    1. Computational and Systems Biology
    Swann Floc'hlay, Ramya Balaji ... Stein Aerts
    Research Article Updated

    Wound response programs are often activated during neoplastic growth in tumors. In both wound repair and tumor growth, cells respond to acute stress and balance the activation of multiple programs, including apoptosis, proliferation, and cell migration. Central to those responses are the activation of the JNK/MAPK and JAK/STAT signaling pathways. Yet, to what extent these signaling cascades interact at the cis-regulatory level and how they orchestrate different regulatory and phenotypic responses is still unclear. Here, we aim to characterize the regulatory states that emerge and cooperate in the wound response, using the Drosophila melanogaster wing disc as a model system, and compare these with cancer cell states induced by rasV12scrib-/- in the eye disc. We used single-cell multiome profiling to derive enhancer gene regulatory networks (eGRNs) by integrating chromatin accessibility and gene expression signals. We identify a ‘proliferative’ eGRN, active in the majority of wounded cells and controlled by AP-1 and STAT. In a smaller, but distinct population of wound cells, a ‘senescent’ eGRN is activated and driven by C/EBP-like transcription factors (Irbp18, Xrp1, Slow border, and Vrille) and Scalloped. These two eGRN signatures are found to be active in tumor cells at both gene expression and chromatin accessibility levels. Our single-cell multiome and eGRNs resource offers an in-depth characterization of the senescence markers, together with a new perspective on the shared gene regulatory programs acting during wound response and oncogenesis.

    1. Computational and Systems Biology
    2. Neuroscience
    Bo Shen, Kenway Louie, Paul W Glimcher
    Research Article

    Inhibition is crucial for brain function, regulating network activity by balancing excitation and implementing gain control. Recent evidence suggests that beyond simply inhibiting excitatory activity, inhibitory neurons can also shape circuit function through disinhibition. While disinhibitory circuit motifs have been implicated in cognitive processes including learning, attentional selection, and input gating, the role of disinhibition is largely unexplored in the study of decision-making. Here, we show that disinhibition provides a simple circuit motif for fast, dynamic control of network state and function. This dynamic control allows a disinhibition-based decision model to reproduce both value normalization and winner-take-all dynamics, the two central features of neurobiological decision-making captured in separate existing models with distinct circuit motifs. In addition, the disinhibition model exhibits flexible attractor dynamics consistent with different forms of persistent activity seen in working memory. Fitting the model to empirical data shows it captures well both the neurophysiological dynamics of value coding and psychometric choice behavior. Furthermore, the biological basis of disinhibition provides a simple mechanism for flexible top-down control of the network states, enabling the circuit to capture diverse task-dependent neural dynamics. These results suggest a biologically plausible unifying mechanism for decision-making and emphasize the importance of local disinhibition in neural processing.