1. Chromosomes and Gene Expression
Download icon

RNA Polymerase II cluster dynamics predict mRNA output in living cells

Research Article
  • Cited 113
  • Views 8,997
  • Annotations
Cite this article as: eLife 2016;5:e13617 doi: 10.7554/eLife.13617

Abstract

Protein clustering is a hallmark of genome regulation in mammalian cells. However, the dynamic molecular processes involved make it difficult to correlate clustering with functional consequences in vivo. We developed a live-cell super-resolution approach to uncover the correlation between mRNA synthesis and the dynamics of RNA Polymerase II (Pol II) clusters at a gene locus. For endogenous β-actin genes in mouse embryonic fibroblasts, we observe that short-lived (~8 s) Pol II clusters correlate with basal mRNA output. During serum stimulation, a stereotyped increase in Pol II cluster lifetime correlates with a proportionate increase in the number of mRNAs synthesized. Our findings suggest that transient clustering of Pol II may constitute a pre-transcriptional regulatory event that predictably modulates nascent mRNA output.

Article and author information

Author details

  1. Won-Ki Cho

    Department of Physics, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Namrata Jayanth

    Department of Physics, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Brian P English

    Department of Physics, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Takuma Inoue

    Department of Physics, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. J Owen Andrews

    Department of Physics, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. William Conway

    Department of Physics, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Jonathan B Grimm

    Department of Physics, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Jan-Hendrik Spille

    Department of Physics, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Luke D Lavis

    Department of Physics, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Timothée Lionnet

    Department of Physics, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Ibrahim I Cisse

    Department of Physics, Massachusetts Institute of Technology, Cambridge, United States
    For correspondence
    icisse@mit.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Xiaowei Zhuang, Howard Hughes Medical Institute, Harvard University, United States

Publication history

  1. Received: December 8, 2015
  2. Accepted: May 2, 2016
  3. Accepted Manuscript published: May 3, 2016 (version 1)
  4. Version of Record published: June 30, 2016 (version 2)

Copyright

© 2016, Cho et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,997
    Page views
  • 2,642
    Downloads
  • 113
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Chromosomes and Gene Expression
    2. Plant Biology
    Jaemyung Choi et al.
    Research Article

    Flowering plants utilize small RNA molecules to guide DNA methyltransferases to genomic sequences. This RNA-directed DNA methylation (RdDM) pathway preferentially targets euchromatic transposable elements. However, RdDM is thought to be recruited by methylation of histone H3 at lysine 9 (H3K9me), a hallmark of heterochromatin. How RdDM is targeted to euchromatin despite an affinity for H3K9me is unclear. Here we show that loss of histone H1 enhances heterochromatic RdDM, preferentially at nucleosome linker DNA. Surprisingly, this does not require SHH1, the RdDM component that binds H3K9me. Furthermore, H3K9me is dispensable for RdDM, as is CG DNA methylation. Instead, we find that non-CG methylation is specifically associated with small RNA biogenesis, and without H1 small RNA production quantitatively expands to non-CG methylated loci. Our results demonstrate that H1 enforces the separation of euchromatic and heterochromatic DNA methylation pathways by excluding the small RNA-generating branch of RdDM from non-CG methylated heterochromatin.

    1. Chromosomes and Gene Expression
    2. Microbiology and Infectious Disease
    Sarah Lauren Svensson, Cynthia Mira Sharma
    Research Article

    Bacterial small RNAs (sRNAs) are important post-transcriptional regulators in stress responses and virulence. They can be derived from an expanding list of genomic contexts, such as processing from parental transcripts by RNase E. The role of RNase III in sRNA biogenesis is less well understood despite its well-known roles in rRNA processing, RNA decay, and cleavage of sRNA-mRNA duplexes. Here, we show that RNase III processes a pair of cis-encoded sRNAs (CJnc190 and CJnc180) of the foodborne pathogen Campylobacter jejuni. While CJnc180 processing by RNase III requires CJnc190, In contrast, RNase III processes CJnc190 independent of CJnc180 via cleavage of an intramolecular duplex. We also show that CJnc190 directly represses translation of the colonization factor PtmG by targeting a G-rich ribosome binding site, and uncover that CJnc180 is a cis-acting antagonist of CJnc190, indirectly affecting ptmG regulation. Our study highlights a role for RNase III in sRNA biogenesis and adds cis-encoded RNAs to the expanding diversity of transcripts that antagonize bacterial sRNAs.