The Apelin receptor enhances Nodal/TGFβ signaling to ensure proper cardiac development

  1. Ashish R Deshwar
  2. Serene C Chng
  3. Lena Ho
  4. Bruno Reversade
  5. Ian C Scott  Is a corresponding author
  1. The Hospital for Sick Children, Canada
  2. A*STAR, Singapore

Abstract

The Apelin receptor (Aplnr) is essential for heart development, controlling the early migration of cardiac progenitors. Here we demonstrate that in zebrafish Aplnr modulates Nodal/TGFβ signaling, a key pathway essential for mesendoderm induction and migration. Loss of Aplnr function leads to a reduction in Nodal target gene expression whereas activation of Aplnr by a non-peptide agonist increases the expression of these same targets. Furthermore, loss of Aplnr results in a delay in the expression of the cardiogenic transcription factors mespaa/ab. Elevating Nodal levels in aplnra/b morphant and double mutant embryos is sufficient to rescue cardiac differentiation defects. We demonstrate that loss of Aplnr attenuates the activity of a point source of Nodal ligands Squint and Cyclops in a non-cell autonomous manner. Our results favour a model in which Aplnr is required to fine-tune Nodal output, acting as a specific rheostat for the Nodal/TGFβ pathway during the earliest stages of cardiogenesis.

Article and author information

Author details

  1. Ashish R Deshwar

    Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Serene C Chng

    Institute of Medical Biology, A*STAR, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  3. Lena Ho

    Institute of Medical Biology, A*STAR, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  4. Bruno Reversade

    Institute of Medical Biology, A*STAR, Sinagapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  5. Ian C Scott

    Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada
    For correspondence
    ian.scott@sickkids.ca
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: Zebrafish were housed and handled as per Canadian Council on Animal Care and Hospital for Sick Children Laboratory Animal Services (LAS) guidelines under LAS protocol number 33584.

Copyright

© 2016, Deshwar et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,602
    views
  • 664
    downloads
  • 24
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ashish R Deshwar
  2. Serene C Chng
  3. Lena Ho
  4. Bruno Reversade
  5. Ian C Scott
(2016)
The Apelin receptor enhances Nodal/TGFβ signaling to ensure proper cardiac development
eLife 5:e13758.
https://doi.org/10.7554/eLife.13758

Share this article

https://doi.org/10.7554/eLife.13758

Further reading

    1. Developmental Biology
    Saira Amir, Olatunbosun Arowolo ... Alexander Suvorov
    Research Article

    Over the past several decades, a trend toward delayed childbirth has led to increases in parental age at the time of conception. Sperm epigenome undergoes age-dependent changes increasing risks of adverse conditions in offspring conceived by fathers of advanced age. The mechanism(s) linking paternal age with epigenetic changes in sperm remain unknown. The sperm epigenome is shaped in a compartment protected by the blood-testes barrier (BTB) known to deteriorate with age. Permeability of the BTB is regulated by the balance of two mTOR complexes in Sertoli cells where mTOR complex 1 (mTORC1) promotes the opening of the BTB and mTOR complex 2 (mTORC2) promotes its integrity. We hypothesized that this balance is also responsible for age-dependent changes in the sperm epigenome. To test this hypothesis, we analyzed reproductive outcomes, including sperm DNA methylation in transgenic mice with Sertoli cell-specific suppression of mTORC1 (Rptor KO) or mTORC2 (Rictor KO). mTORC2 suppression accelerated aging of the sperm DNA methylome and resulted in a reproductive phenotype concordant with older age, including decreased testes weight and sperm counts, and increased percent of morphologically abnormal spermatozoa and mitochondrial DNA copy number. Suppression of mTORC1 resulted in the shift of DNA methylome in sperm opposite to the shift associated with physiological aging – sperm DNA methylome rejuvenation and mild changes in sperm parameters. These results demonstrate for the first time that the balance of mTOR complexes in Sertoli cells regulates the rate of sperm epigenetic aging. Thus, mTOR pathway in Sertoli cells may be used as a novel target of therapeutic interventions to rejuvenate the sperm epigenome in advanced-age fathers.

    1. Developmental Biology
    Jing Wang, Yingying Yin ... Zhaojian Liu
    Research Article

    Transmembrane channel-like (TMC) proteins are a highly conserved ion channel family consisting of eight members (TMC1–TMC8) in mammals. TMC1/2 are components of the mechanotransduction channel in hair cells, and mutations of TMC1/2 cause deafness in humans and mice. However, the physiological roles of other TMC proteins remain largely unknown. Here, we show that Tmc7 is specifically expressed in the testis and that it is required for acrosome biogenesis during spermatogenesis. Tmc7−/− mice exhibited abnormal sperm head, disorganized mitochondrial sheaths, and reduced number of elongating spermatids, similar to human oligo-astheno-teratozoospermia. We further demonstrate that TMC7 is colocalized with GM130 at the cis-Golgi region in round spermatids. TMC7 deficiency leads to aberrant Golgi morphology and impaired fusion of Golgi-derived vesicles to the developing acrosome. Moreover, upon loss of TMC7 intracellular ion homeostasis is impaired and ROS levels are increased, which in turn causes Golgi and endoplasmic reticulum stress. Taken together, these results suggest that TMC7 is required to maintain pH and ion homeostasis, which is needed for acrosome biogenesis. Our findings unveil a novel role for TMC7 in acrosome biogenesis during spermiogenesis.