1. Neuroscience
Download icon

Body side-specific control of motor activity during turning in a walking animal

  1. Matthias Gruhn  Is a corresponding author
  2. Philipp Rosenbaum
  3. Till Bockemühl
  4. Ansgar Büschges
  1. University of Cologne, Germany
Research Article
  • Cited 10
  • Views 1,216
  • Annotations
Cite this article as: eLife 2016;5:e13799 doi: 10.7554/eLife.13799

Abstract

Animals and humans need to move deftly and flexibly to adapt to environmental demands. Despite a large body of work on the neural control of walking in invertebrates and vertebrates alike, the mechanisms underlying the motor flexibility that is needed to adjust the motor behavior remain largely unknown. Here, we investigated optomotor-induced turning and the neuronal mechanisms underlying the differences between the leg movements of the two body sides in the stick insect Carausius morosus. We present data to show that the generation of turning kinematics in an insect are the combined result of descending unilateral commands that change the leg motor output via task-specific modifications in the processing of local sensory feedback as well as modification of the activity of local central pattern generating networks in a body-side-specific way. To our knowledge, this is the first study to demonstrate the specificity of such modifications in a defined motor task.

Article and author information

Author details

  1. Matthias Gruhn

    Department of Animal Physiology, Biocenter, University of Cologne, Cologne, Germany
    For correspondence
    mgruhn@uni-koeln.de
    Competing interests
    The authors declare that no competing interests exist.
  2. Philipp Rosenbaum

    Department of Animal Physiology, Biocenter, University of Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Till Bockemühl

    Department of Animal Physiology, Biocenter, University of Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Ansgar Büschges

    Department of Animal Physiology, Biocenter, University of Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Ronald L Calabrese, Emory University, United States

Publication history

  1. Received: December 14, 2015
  2. Accepted: April 25, 2016
  3. Accepted Manuscript published: April 27, 2016 (version 1)
  4. Version of Record published: June 6, 2016 (version 2)

Copyright

© 2016, Gruhn et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,216
    Page views
  • 323
    Downloads
  • 10
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Casey Paquola et al.
    Tools and Resources Updated

    Neuroimaging stands to benefit from emerging ultrahigh-resolution 3D histological atlases of the human brain; the first of which is ‘BigBrain’. Here, we review recent methodological advances for the integration of BigBrain with multi-modal neuroimaging and introduce a toolbox, ’BigBrainWarp’, that combines these developments. The aim of BigBrainWarp is to simplify workflows and support the adoption of best practices. This is accomplished with a simple wrapper function that allows users to easily map data between BigBrain and standard MRI spaces. The function automatically pulls specialised transformation procedures, based on ongoing research from a wide collaborative network of researchers. Additionally, the toolbox improves accessibility of histological information through dissemination of ready-to-use cytoarchitectural features. Finally, we demonstrate the utility of BigBrainWarp with three tutorials and discuss the potential of the toolbox to support multi-scale investigations of brain organisation.

    1. Neuroscience
    Gabriella R Sterne et al.
    Tools and Resources Updated

    Neural circuits carry out complex computations that allow animals to evaluate food, select mates, move toward attractive stimuli, and move away from threats. In insects, the subesophageal zone (SEZ) is a brain region that receives gustatory, pheromonal, and mechanosensory inputs and contributes to the control of diverse behaviors, including feeding, grooming, and locomotion. Despite its importance in sensorimotor transformations, the study of SEZ circuits has been hindered by limited knowledge of the underlying diversity of SEZ neurons. Here, we generate a collection of split-GAL4 lines that provides precise genetic targeting of 138 different SEZ cell types in adult Drosophila melanogaster, comprising approximately one third of all SEZ neurons. We characterize the single-cell anatomy of these neurons and find that they cluster by morphology into six supergroups that organize the SEZ into discrete anatomical domains. We find that the majority of local SEZ interneurons are not classically polarized, suggesting rich local processing, whereas SEZ projection neurons tend to be classically polarized, conveying information to a limited number of higher brain regions. This study provides insight into the anatomical organization of the SEZ and generates resources that will facilitate further study of SEZ neurons and their contributions to sensory processing and behavior.