Lys29-linkage of ASK1 by Skp1−Cullin 1−Fbxo21 ubiquitin ligase complex is required for antiviral innate response

  1. Zhou Yu
  2. Taoyong Chen  Is a corresponding author
  3. Xuelian Li
  4. Mingjin Yang
  5. Songqing Tang
  6. Xuhui Zhu
  7. Yan Gu
  8. Xiaoping Su
  9. Meng Xia
  10. Weihua Li
  11. Xuemin Zhang
  12. Qingqing Wang
  13. Xuetao Cao
  14. Jianli Wang
  1. Institute of Immunology, China
  2. National Key Laboratory of Medical Immunology and Institute of Immunology, China
  3. National Key Laboratory of Medical Molecular Biology and Department of Immunology, China
  4. Institute of Basic Medical Sciences, China
  5. Zhejiang University School of Medicine, China

Abstract

Protein ubiquitination regulated by ubiquitin ligases plays important roles in innate immunity. However, key regulators of ubiquitination during innate response and roles of new types of ubiquitination (apart from Lys48- and Lys63-linkage) in control of innate signaling have not been clearly understood. Here we report that F-box only protein Fbxo21, a functionally unknown component of SCF (Skp1-Cul1-F-box protein) complex, facilitates Lys29-linkage and activation of ASK1 (apoptosis signal-regulating kinase 1), and promotes type I interferon production upon viral infection. Fbxo21 deficiency in mice cells impairs virus-induced Lys29-linkage and activation of ASK1, attenuates c-Jun N-terminal kinase (JNK) and p38 signaling pathway, and decreases the production of proinflammatory cytokines and type I interferon, resulting in reduced antiviral innate response and enhanced virus replication. Therefore Fbxo21 is required for ASK1 activation via Lys29-linkage of ASK1 during antiviral innate response, providing mechanistic insights into non-proteolytic roles of SCF complex in innate immune response.

Article and author information

Author details

  1. Zhou Yu

    Zhejiang University School of Medicine, Institute of Immunology, Hangzhou, China
    Competing interests
    No competing interests declared.
  2. Taoyong Chen

    Second Military Medical University, National Key Laboratory of Medical Immunology and Institute of Immunology, Shanghai, China
    For correspondence
    chenty@immunol.org
    Competing interests
    No competing interests declared.
  3. Xuelian Li

    Second Military Medical University, National Key Laboratory of Medical Immunology and Institute of Immunology, Shanghai, China
    Competing interests
    No competing interests declared.
  4. Mingjin Yang

    Second Military Medical University, National Key Laboratory of Medical Immunology and Institute of Immunology, Shanghai, China
    Competing interests
    No competing interests declared.
  5. Songqing Tang

    Zhejiang University School of Medicine, Institute of Immunology, Hangzhou, China
    Competing interests
    No competing interests declared.
  6. Xuhui Zhu

    Second Military Medical University, National Key Laboratory of Medical Immunology and Institute of Immunology, Shanghai, China
    Competing interests
    No competing interests declared.
  7. Yan Gu

    Second Military Medical University, National Key Laboratory of Medical Immunology and Institute of Immunology, Shanghai, China
    Competing interests
    No competing interests declared.
  8. Xiaoping Su

    Second Military Medical University, National Key Laboratory of Medical Immunology and Institute of Immunology, Shanghai, China
    Competing interests
    No competing interests declared.
  9. Meng Xia

    Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, National Key Laboratory of Medical Molecular Biology and Department of Immunology, Beijing, China
    Competing interests
    No competing interests declared.
  10. Weihua Li

    National Center of Biomedical Analysis, Institute of Basic Medical Sciences, Beijing, China
    Competing interests
    No competing interests declared.
  11. Xuemin Zhang

    National Center of Biomedical Analysis, Institute of Basic Medical Sciences, Beijing, China
    Competing interests
    No competing interests declared.
  12. Qingqing Wang

    Zhejiang University School of Medicine, Institute of Immunology, Hangzhou, China
    Competing interests
    No competing interests declared.
  13. Xuetao Cao

    National Key Laboratory of Medical Immunology and Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
    Competing interests
    Xuetao Cao, Reviewing editor, eLife.
  14. Jianli Wang

    Zhejiang University School of Medicine, Institute of Immunology, Hangzhou, China
    Competing interests
    No competing interests declared.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health, and was approved by the Scientific Investigation Board of Second Military Medical University, Shanghai (Case No. SMMU-2015-0067).

Copyright

© 2016, Yu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,530
    views
  • 710
    downloads
  • 47
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zhou Yu
  2. Taoyong Chen
  3. Xuelian Li
  4. Mingjin Yang
  5. Songqing Tang
  6. Xuhui Zhu
  7. Yan Gu
  8. Xiaoping Su
  9. Meng Xia
  10. Weihua Li
  11. Xuemin Zhang
  12. Qingqing Wang
  13. Xuetao Cao
  14. Jianli Wang
(2016)
Lys29-linkage of ASK1 by Skp1−Cullin 1−Fbxo21 ubiquitin ligase complex is required for antiviral innate response
eLife 5:e14087.
https://doi.org/10.7554/eLife.14087

Share this article

https://doi.org/10.7554/eLife.14087

Further reading

    1. Cell Biology
    2. Immunology and Inflammation
    Armando Montoya-Garcia, Idaira M Guerrero-Fonseca ... Michael Schnoor
    Research Article

    Arpin was discovered as an inhibitor of the Arp2/3 complex localized at the lamellipodial tip of fibroblasts, where it regulated migration steering. Recently, we showed that arpin stabilizes the epithelial barrier in an Arp2/3-dependent manner. However, the expression and functions of arpin in endothelial cells (EC) have not yet been described. Arpin mRNA and protein are expressed in EC and downregulated by pro-inflammatory cytokines. Arpin depletion in Human Umbilical Vein Endothelial Cells causes the formation of actomyosin stress fibers leading to increased permeability in an Arp2/3-independent manner. Instead, inhibitors of ROCK1 and ZIPK, kinases involved in the generation of stress fibers, normalize the loss-of-arpin effects on actin filaments and permeability. Arpin-deficient mice are viable but show a characteristic vascular phenotype in the lung including edema, microhemorrhage, and vascular congestion, increased F-actin levels, and vascular permeability. Our data show that, apart from being an Arp2/3 inhibitor, arpin is also a regulator of actomyosin contractility and endothelial barrier integrity.

    1. Immunology and Inflammation
    Alexandra a Aybar-Torres, Lennon A Saldarriaga ... Lei Jin
    Research Article

    The significance of STING1 gene in tissue inflammation and cancer immunotherapy has been increasingly recognized. Intriguingly, common human STING1 alleles R71H-G230A-R293Q (HAQ) and G230A-R293Q (AQ) are carried by ~60% of East Asians and ~40% of Africans, respectively. Here, we examine the modulatory effects of HAQ, AQ alleles on STING-associated vasculopathy with onset in infancy (SAVI), an autosomal dominant, fatal inflammatory disease caused by gain-of-function human STING1 mutations. CD4 T cellpenia is evident in SAVI patients and mouse models. Using Sting1 knock-in mice expressing common human STING1 alleles HAQ, AQ, and Q293, we found that HAQ, AQ, and Q293 splenocytes resist STING1-mediated cell death ex vivo, establishing a critical role of STING1 residue 293 in cell death. The HAQ/SAVI(N153S) and AQ/SAVI(N153S) mice did not have CD4 T cellpenia. The HAQ/SAVI(N153S), AQ/SAVI(N153S) mice have more (~10-fold, ~20-fold, respectively) T-regs than WT/SAVI(N153S) mice. Remarkably, while they have comparable TBK1, IRF3, and NFκB activation as the WT/SAVI, the AQ/SAVI mice have no tissue inflammation, regular body weight, and normal lifespan. We propose that STING1 activation promotes tissue inflammation by depleting T-regs cells in vivo. Billions of modern humans have the dominant HAQ, AQ alleles. STING1 research and STING1-targeting immunotherapy should consider STING1 heterogeneity in humans.