Lys29-linkage of ASK1 by Skp1−Cullin 1−Fbxo21 ubiquitin ligase complex is required for antiviral innate response

  1. Zhou Yu
  2. Taoyong Chen  Is a corresponding author
  3. Xuelian Li
  4. Mingjin Yang
  5. Songqing Tang
  6. Xuhui Zhu
  7. Yan Gu
  8. Xiaoping Su
  9. Meng Xia
  10. Weihua Li
  11. Xuemin Zhang
  12. Qingqing Wang
  13. Xuetao Cao
  14. Jianli Wang
  1. Institute of Immunology, China
  2. National Key Laboratory of Medical Immunology and Institute of Immunology, China
  3. National Key Laboratory of Medical Molecular Biology and Department of Immunology, China
  4. Institute of Basic Medical Sciences, China
  5. Zhejiang University School of Medicine, China

Abstract

Protein ubiquitination regulated by ubiquitin ligases plays important roles in innate immunity. However, key regulators of ubiquitination during innate response and roles of new types of ubiquitination (apart from Lys48- and Lys63-linkage) in control of innate signaling have not been clearly understood. Here we report that F-box only protein Fbxo21, a functionally unknown component of SCF (Skp1-Cul1-F-box protein) complex, facilitates Lys29-linkage and activation of ASK1 (apoptosis signal-regulating kinase 1), and promotes type I interferon production upon viral infection. Fbxo21 deficiency in mice cells impairs virus-induced Lys29-linkage and activation of ASK1, attenuates c-Jun N-terminal kinase (JNK) and p38 signaling pathway, and decreases the production of proinflammatory cytokines and type I interferon, resulting in reduced antiviral innate response and enhanced virus replication. Therefore Fbxo21 is required for ASK1 activation via Lys29-linkage of ASK1 during antiviral innate response, providing mechanistic insights into non-proteolytic roles of SCF complex in innate immune response.

Article and author information

Author details

  1. Zhou Yu

    Zhejiang University School of Medicine, Institute of Immunology, Hangzhou, China
    Competing interests
    No competing interests declared.
  2. Taoyong Chen

    Second Military Medical University, National Key Laboratory of Medical Immunology and Institute of Immunology, Shanghai, China
    For correspondence
    chenty@immunol.org
    Competing interests
    No competing interests declared.
  3. Xuelian Li

    Second Military Medical University, National Key Laboratory of Medical Immunology and Institute of Immunology, Shanghai, China
    Competing interests
    No competing interests declared.
  4. Mingjin Yang

    Second Military Medical University, National Key Laboratory of Medical Immunology and Institute of Immunology, Shanghai, China
    Competing interests
    No competing interests declared.
  5. Songqing Tang

    Zhejiang University School of Medicine, Institute of Immunology, Hangzhou, China
    Competing interests
    No competing interests declared.
  6. Xuhui Zhu

    Second Military Medical University, National Key Laboratory of Medical Immunology and Institute of Immunology, Shanghai, China
    Competing interests
    No competing interests declared.
  7. Yan Gu

    Second Military Medical University, National Key Laboratory of Medical Immunology and Institute of Immunology, Shanghai, China
    Competing interests
    No competing interests declared.
  8. Xiaoping Su

    Second Military Medical University, National Key Laboratory of Medical Immunology and Institute of Immunology, Shanghai, China
    Competing interests
    No competing interests declared.
  9. Meng Xia

    Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, National Key Laboratory of Medical Molecular Biology and Department of Immunology, Beijing, China
    Competing interests
    No competing interests declared.
  10. Weihua Li

    National Center of Biomedical Analysis, Institute of Basic Medical Sciences, Beijing, China
    Competing interests
    No competing interests declared.
  11. Xuemin Zhang

    National Center of Biomedical Analysis, Institute of Basic Medical Sciences, Beijing, China
    Competing interests
    No competing interests declared.
  12. Qingqing Wang

    Zhejiang University School of Medicine, Institute of Immunology, Hangzhou, China
    Competing interests
    No competing interests declared.
  13. Xuetao Cao

    National Key Laboratory of Medical Immunology and Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
    Competing interests
    Xuetao Cao, Reviewing editor, eLife.
  14. Jianli Wang

    Zhejiang University School of Medicine, Institute of Immunology, Hangzhou, China
    Competing interests
    No competing interests declared.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health, and was approved by the Scientific Investigation Board of Second Military Medical University, Shanghai (Case No. SMMU-2015-0067).

Copyright

© 2016, Yu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,561
    views
  • 713
    downloads
  • 48
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zhou Yu
  2. Taoyong Chen
  3. Xuelian Li
  4. Mingjin Yang
  5. Songqing Tang
  6. Xuhui Zhu
  7. Yan Gu
  8. Xiaoping Su
  9. Meng Xia
  10. Weihua Li
  11. Xuemin Zhang
  12. Qingqing Wang
  13. Xuetao Cao
  14. Jianli Wang
(2016)
Lys29-linkage of ASK1 by Skp1−Cullin 1−Fbxo21 ubiquitin ligase complex is required for antiviral innate response
eLife 5:e14087.
https://doi.org/10.7554/eLife.14087

Share this article

https://doi.org/10.7554/eLife.14087

Further reading

    1. Immunology and Inflammation
    2. Medicine
    Angela L Rachubinski, Elizabeth Wallace ... Joaquín M Espinosa
    Research Article

    Background:

    Individuals with Down syndrome (DS), the genetic condition caused by trisomy 21 (T21), display clear signs of immune dysregulation, including high rates of autoimmunity and severe complications from infections. Although it is well established that T21 causes increased interferon responses and JAK/STAT signaling, elevated autoantibodies, global immune remodeling, and hypercytokinemia, the interplay between these processes, the clinical manifestations of DS, and potential therapeutic interventions remain ill defined.

    Methods:

    We report a comprehensive analysis of immune dysregulation at the clinical, cellular, and molecular level in hundreds of individuals with DS, including autoantibody profiling, cytokine analysis, and deep immune mapping. We also report the interim analysis of a Phase II clinical trial investigating the safety and efficacy of the JAK inhibitor tofacitinib through multiple clinical and molecular endpoints.

    Results:

    We demonstrate multi-organ autoimmunity of pediatric onset concurrent with unexpected autoantibody-phenotype associations in DS. Importantly, constitutive immune remodeling and hypercytokinemia occur from an early age prior to autoimmune diagnoses or autoantibody production. Analysis of the first 10 participants to complete 16 weeks of tofacitinib treatment shows a good safety profile and no serious adverse events. Treatment reduced skin pathology in alopecia areata, psoriasis, and atopic dermatitis, while decreasing interferon scores, cytokine scores, and levels of pathogenic autoantibodies without overt immune suppression.

    Conclusions:

    JAK inhibition is a valid strategy to treat autoimmune conditions in DS. Additional research is needed to define the effects of JAK inhibition on the broader developmental and clinical hallmarks of DS.

    Funding:

    NIAMS, Global Down Syndrome Foundation.

    Clinical trial number:

    NCT04246372.

    1. Immunology and Inflammation
    Miki Kume, Hanako Koguchi-Yoshioka ... Rei Watanabe
    Research Article

    Psoriasis is a multifactorial disorder mediated by IL-17-producing T cells, involving immune cells and skin-constituting cells. Semaphorin 4A (Sema4A), an immune semaphorin, is known to take part in T helper type 1/17 differentiation and activation. However, Sema4A is also crucial for maintaining peripheral tissue homeostasis and its involvement in skin remains unknown. Here, we revealed that while Sema4A expression was pronounced in psoriatic blood lymphocytes and monocytes, it was downregulated in the keratinocytes of both psoriatic lesions and non-lesions compared to controls. Imiquimod application induced more severe dermatitis in Sema4A knockout (KO) mice compared to wild-type (WT) mice. The naïve skin of Sema4A KO mice showed increased T cell infiltration and IL-17A expression along with thicker epidermis and distinct cytokeratin expression compared to WT mice, which are hallmarks of psoriatic non-lesions. Analysis of bone marrow chimeric mice suggested that Sema4A expression in keratinocytes plays a regulatory role in imiquimod-induced dermatitis. The epidermis of psoriatic non-lesion and Sema4A KO mice demonstrated mTOR complex 1 upregulation, and the application of mTOR inhibitors reversed the skewed expression of cytokeratins in Sema4A KO mice. Conclusively, Sema4A-mediated signaling cascades can be triggers for psoriasis and targets in the treatment and prevention of psoriasis.