1. Neuroscience
Download icon

Cellular resolution circuit mapping in mouse brain with temporal-focused excitation of soma-targeted channelrhodopsin

  1. Christopher A Baker  Is a corresponding author
  2. Yishai M Elyada
  3. Andres Parra-Martin
  4. McLean Bolton  Is a corresponding author
  1. Max Planck Florida Institute for Neuroscience, United States
  2. Max Planck Institute for Neuroscience, United States
Tools and Resources
  • Cited 55
  • Views 6,666
  • Annotations
Cite this article as: eLife 2016;5:e14193 doi: 10.7554/eLife.14193

Abstract

We describe refinements in optogenetic methods for circuit mapping that enable measurements of functional synaptic connectivity with single neuron resolution. By expanding a two-photon beam in the imaging plane using the temporal focusing method and restricting channelrhodopsin to the soma and proximal dendrites, we are able to reliably evoke action potentials in individual neurons, verify spike generation with GCaMP6s, and determine the presence or absence of synaptic connections with patch-clamp electrophysiological recording.

Article and author information

Author details

  1. Christopher A Baker

    Disorders of Neural Circuit Function, Max Planck Florida Institute for Neuroscience, Jupiter, United States
    For correspondence
    christopher.baker@mpfi.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0604-8449
  2. Yishai M Elyada

    Functional Architecture of the Cerebral Cortex, Max Planck Florida Institute for Neuroscience, Jupiter, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Andres Parra-Martin

    Functional Architecture of the Cerebral Cortex, Max Planck Institute for Neuroscience, Jupiter, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. McLean Bolton

    Disorders of Neural Circuit Function, Max Planck Florida Institute for Neuroscience, Jupiter, United States
    For correspondence
    mclean.bolton@mpfi.org
    Competing interests
    The authors declare that no competing interests exist.

Funding

Max Planck Florida Institute

  • Christopher A Baker
  • Yishai M Elyada
  • Andres Parra-Martin
  • McLean Bolton

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health, and all animals were handled according to protocols approved by the Institutional Animal Care and Use Committee of the Max Planck Florida Institute for Neuroscience.

Reviewing Editor

  1. Michael Häusser, University College London, United Kingdom

Publication history

  1. Received: January 5, 2016
  2. Accepted: August 14, 2016
  3. Accepted Manuscript published: August 15, 2016 (version 1)
  4. Version of Record published: August 26, 2016 (version 2)

Copyright

© 2016, Baker et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,666
    Page views
  • 1,632
    Downloads
  • 55
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Amy A Worth et al.
    Research Article Updated

    The cytokine, GDF15, is produced in pathological states which cause cellular stress, including cancer. When over expressed, it causes dramatic weight reduction, suggesting a role in disease-related anorexia. Here, we demonstrate that the GDF15 receptor, GFRAL, is located in a subset of cholecystokinin neurons which span the area postrema and the nucleus of the tractus solitarius of the mouse. GDF15 activates GFRALAP/NTS neurons and supports conditioned taste and place aversions, while the anorexia it causes can be blocked by a monoclonal antibody directed at GFRAL or by disrupting CCK neuronal signalling. The cancer-therapeutic drug, cisplatin, induces the release of GDF15 and activates GFRALAP/NTS neurons, as well as causing significant reductions in food intake and body weight in mice. These metabolic effects of cisplatin are abolished by pre-treatment with the GFRAL monoclonal antibody. Our results suggest that GFRAL neutralising antibodies or antagonists may provide a co-treatment opportunity for patients undergoing chemotherapy.

    1. Neuroscience
    Jessica M Jones et al.
    Tools and Resources

    Objective and automatic measurement of pain in mice remains a barrier for discovery in neuroscience. Here we capture paw kinematics during pain behavior in mice with high-speed videography and automated paw tracking with machine and deep learning approaches. Our statistical software platform, PAWS (Pain Assessment at Withdrawal Speeds), uses a univariate projection of paw position over time to automatically quantify seven behavioral features that are combined into a single, univariate pain score. Automated paw tracking combined with PAWS reveals a behaviorally-divergent mouse strain that displays hyper-sensitivity to mechanical stimuli. To demonstrate the efficacy of PAWS for detecting spinally- versus centrally-mediated behavioral responses, we chemogenetically activated nociceptive neurons in the amygdala, which further separated the pain-related behavioral features and the resulting pain score. Taken together, this automated pain quantification approach will increase objectivity in collecting rigorous behavioral data, and it is compatible with other neural circuit dissection tools for determining the mouse pain state.