Cellular resolution circuit mapping in mouse brain with temporal-focused excitation of soma-targeted channelrhodopsin

  1. Christopher A Baker  Is a corresponding author
  2. Yishai M Elyada
  3. Andres Parra-Martin
  4. McLean Bolton  Is a corresponding author
  1. Max Planck Florida Institute for Neuroscience, United States
  2. Max Planck Institute for Neuroscience, United States

Abstract

We describe refinements in optogenetic methods for circuit mapping that enable measurements of functional synaptic connectivity with single neuron resolution. By expanding a two-photon beam in the imaging plane using the temporal focusing method and restricting channelrhodopsin to the soma and proximal dendrites, we are able to reliably evoke action potentials in individual neurons, verify spike generation with GCaMP6s, and determine the presence or absence of synaptic connections with patch-clamp electrophysiological recording.

Article and author information

Author details

  1. Christopher A Baker

    Disorders of Neural Circuit Function, Max Planck Florida Institute for Neuroscience, Jupiter, United States
    For correspondence
    christopher.baker@mpfi.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0604-8449
  2. Yishai M Elyada

    Functional Architecture of the Cerebral Cortex, Max Planck Florida Institute for Neuroscience, Jupiter, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Andres Parra-Martin

    Functional Architecture of the Cerebral Cortex, Max Planck Institute for Neuroscience, Jupiter, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. McLean Bolton

    Disorders of Neural Circuit Function, Max Planck Florida Institute for Neuroscience, Jupiter, United States
    For correspondence
    mclean.bolton@mpfi.org
    Competing interests
    The authors declare that no competing interests exist.

Funding

Max Planck Florida Institute

  • Christopher A Baker
  • Yishai M Elyada
  • Andres Parra-Martin
  • McLean Bolton

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health, and all animals were handled according to protocols approved by the Institutional Animal Care and Use Committee of the Max Planck Florida Institute for Neuroscience.

Copyright

© 2016, Baker et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,547
    views
  • 1,816
    downloads
  • 136
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Christopher A Baker
  2. Yishai M Elyada
  3. Andres Parra-Martin
  4. McLean Bolton
(2016)
Cellular resolution circuit mapping in mouse brain with temporal-focused excitation of soma-targeted channelrhodopsin
eLife 5:e14193.
https://doi.org/10.7554/eLife.14193

Share this article

https://doi.org/10.7554/eLife.14193

Further reading

    1. Neuroscience
    Sudhanvan Iyer, Kathryn Maxson Jones ... Mary A Majumder
    Review Article

    In this paper, we provide an overview and analysis of the BRAIN Initiative data-sharing ecosystem. First, we compare and contrast the characteristics of the seven BRAIN Initiative data archives germane to data sharing and reuse, namely data submission and access procedures and aspects of interoperability. Second, we discuss challenges, benefits, and future opportunities, focusing on issues largely specific to sharing human data and drawing on N = 34 interviews with diverse stakeholders. The BRAIN Initiative-funded archive ecosystem faces interoperability and data stewardship challenges, such as achieving and maintaining interoperability of data and archives and harmonizing research participants’ informed consents for tiers of access for human data across multiple archives. Yet, a benefit of this distributed archive ecosystem is the ability of more specialized archives to adapt to the needs of particular research communities. Finally, the multiple archives offer ample raw material for network evolution in response to the needs of neuroscientists over time. Our first objective in this paper is to provide a guide to the BRAIN Initiative data-sharing ecosystem for readers interested in sharing and reusing neuroscience data. Second, our analysis supports the development of empirically informed policy and practice aimed at making neuroscience data more findable, accessible, interoperable, and reusable.

    1. Neuroscience
    Ji Eun Ryu, Kyu-Won Shim ... Eun Young Kim
    Research Article

    The circadian clock, an internal time-keeping system orchestrates 24 hr rhythms in physiology and behavior by regulating rhythmic transcription in cells. Astrocytes, the most abundant glial cells, play crucial roles in CNS functions, but the impact of the circadian clock on astrocyte functions remains largely unexplored. In this study, we identified 412 circadian rhythmic transcripts in cultured mouse cortical astrocytes through RNA sequencing. Gene Ontology analysis indicated that genes involved in Ca2+ homeostasis are under circadian control. Notably, Herpud1 (Herp) exhibited robust circadian rhythmicity at both mRNA and protein levels, a rhythm disrupted in astrocytes lacking the circadian transcription factor, BMAL1. HERP regulated endoplasmic reticulum (ER) Ca2+ release by modulating the degradation of inositol 1,4,5-trisphosphate receptors (ITPRs). ATP-stimulated ER Ca2+ release varied with the circadian phase, being more pronounced at subjective night phase, likely due to the rhythmic expression of ITPR2. Correspondingly, ATP-stimulated cytosolic Ca2+ increases were heightened at the subjective night phase. This rhythmic ER Ca2+ response led to circadian phase-dependent variations in the phosphorylation of Connexin 43 (Ser368) and gap junctional communication. Given the role of gap junction channel (GJC) in propagating Ca2+ signals, we suggest that this circadian regulation of ER Ca2+ responses could affect astrocytic modulation of synaptic activity according to the time of day. Overall, our study enhances the understanding of how the circadian clock influences astrocyte function in the CNS, shedding light on their potential role in daily variations of brain activity and health.