Manipulations of MeCP2 in glutamatergic neurons highlight their contributions to Rett and other neurological disorders

Abstract

Many postnatal onset neurological disorders such as autism spectrum disorders (ASDs) and intellectual disability are thought to arise largely from disruption of excitatory/inhibitory homeostasis. Although mouse models of Rett syndrome (RTT), a postnatal neurological disorder caused by loss-of-function mutations in MECP2, display impaired excitatory neurotransmission, the RTT phenotype can be largely reproduced in mice simply by removing MeCP2 from inhibitory GABAergic neurons. To determine what role excitatory signaling impairment might play in RTT pathogenesis, we generated conditional mouse models with Mecp2 either removed from or expressed solely in glutamatergic neurons. MeCP2 deficiency in glutamatergic neurons leads to early lethality, obesity, tremor, altered anxiety-like behaviors, and impaired acoustic startle response, which is distinct from the phenotype of mice lacking MeCP2 only in inhibitory neurons. These findings reveal a role for excitatory signaling impairment in specific neurobehavioral abnormalities shared by RTT and other postnatal neurological disorders.

Article and author information

Author details

  1. Xiangling Meng

    Department of Neuroscience, BCM, Houston, United States
    Competing interests
    No competing interests declared.
  2. Wei Wang

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  3. Hui Lu

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  4. Ling-jie He

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  5. Wu Chen

    Department of Neuroscience, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  6. Eugene Chao

    Department of Neuroscience, BCM, Houston, United States
    Competing interests
    No competing interests declared.
  7. Marta L Fiorotto

    Children's Nutrition Research Center, Department of Pediatrics, BCM, Houston, United States
    Competing interests
    No competing interests declared.
  8. Bin Tang

    Jan and Dan Duncan Neurological Research Institute, BCM, Houston, United States
    Competing interests
    No competing interests declared.
  9. Jose A Herrera

    Jan and Dan Duncan Neurological Research Institute, BCM, Houston, United States
    Competing interests
    No competing interests declared.
  10. Michelle L Seymour

    Huffington Center on Aging, BCM, Houston, United States
    Competing interests
    No competing interests declared.
  11. Jeffrey L Neul

    Department of Neurosciences, UCSD, San Diego, United States
    Competing interests
    No competing interests declared.
  12. Frederick A Pereira

    Huffington Center on Aging, BCM, Houston, United States
    Competing interests
    No competing interests declared.
  13. Jianrong Tang

    Department of Pediatrics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  14. Mingshan Xue

    Department of Neuroscience, BCM, Houston, United States
    Competing interests
    No competing interests declared.
  15. Huda Y Zoghbi

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    For correspondence
    hzoghbi@bcm.edu
    Competing interests
    Huda Y Zoghbi, Senior Editor, eLife.

Ethics

Animal experimentation: Mice were housed in an AAALAS-certified animal facility. All procedures to maintain and use these mice were approved by the Institutional Animal Care and Use committee for Baylor College of Medicine (Animal protocol number AN-1013 ).

Copyright

© 2016, Meng et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xiangling Meng
  2. Wei Wang
  3. Hui Lu
  4. Ling-jie He
  5. Wu Chen
  6. Eugene Chao
  7. Marta L Fiorotto
  8. Bin Tang
  9. Jose A Herrera
  10. Michelle L Seymour
  11. Jeffrey L Neul
  12. Frederick A Pereira
  13. Jianrong Tang
  14. Mingshan Xue
  15. Huda Y Zoghbi
(2016)
Manipulations of MeCP2 in glutamatergic neurons highlight their contributions to Rett and other neurological disorders
eLife 5:e14199.
https://doi.org/10.7554/eLife.14199

Share this article

https://doi.org/10.7554/eLife.14199

Further reading

    1. Neuroscience
    Gergely F Turi, Sasa Teng ... Yueqing Peng
    Research Article

    Synchronous neuronal activity is organized into neuronal oscillations with various frequency and time domains across different brain areas and brain states. For example, hippocampal theta, gamma, and sharp wave oscillations are critical for memory formation and communication between hippocampal subareas and the cortex. In this study, we investigated the neuronal activity of the dentate gyrus (DG) with optical imaging tools during sleep-wake cycles in mice. We found that the activity of major glutamatergic cell populations in the DG is organized into infraslow oscillations (0.01–0.03 Hz) during NREM sleep. Although the DG is considered a sparsely active network during wakefulness, we found that 50% of granule cells and about 25% of mossy cells exhibit increased activity during NREM sleep, compared to that during wakefulness. Further experiments revealed that the infraslow oscillation in the DG was correlated with rhythmic serotonin release during sleep, which oscillates at the same frequency but in an opposite phase. Genetic manipulation of 5-HT receptors revealed that this neuromodulatory regulation is mediated by Htr1a receptors and the knockdown of these receptors leads to memory impairment. Together, our results provide novel mechanistic insights into how the 5-HT system can influence hippocampal activity patterns during sleep.

    1. Neuroscience
    Sven Ohl, Martin Rolfs
    Research Article

    Detecting causal relations structures our perception of events in the world. Here, we determined for visual interactions whether generalized (i.e. feature-invariant) or specialized (i.e. feature-selective) visual routines underlie the perception of causality. To this end, we applied a visual adaptation protocol to assess the adaptability of specific features in classical launching events of simple geometric shapes. We asked observers to report whether they observed a launch or a pass in ambiguous test events (i.e. the overlap between two discs varied from trial to trial). After prolonged exposure to causal launch events (the adaptor) defined by a particular set of features (i.e. a particular motion direction, motion speed, or feature conjunction), observers were less likely to see causal launches in subsequent ambiguous test events than before adaptation. Crucially, adaptation was contingent on the causal impression in launches as demonstrated by a lack of adaptation in non-causal control events. We assessed whether this negative aftereffect transfers to test events with a new set of feature values that were not presented during adaptation. Processing in specialized (as opposed to generalized) visual routines predicts that the transfer of visual adaptation depends on the feature similarity of the adaptor and the test event. We show that the negative aftereffects do not transfer to unadapted launch directions but do transfer to launch events of different speeds. Finally, we used colored discs to assign distinct feature-based identities to the launching and the launched stimulus. We found that the adaptation transferred across colors if the test event had the same motion direction as the adaptor. In summary, visual adaptation allowed us to carve out a visual feature space underlying the perception of causality and revealed specialized visual routines that are tuned to a launch’s motion direction.