Spatial control of translation repression and polarized growth by conserved NDR kinase Orb6 and RNA-binding protein Sts5

  1. Illyce Nuñez
  2. Marbelys Rodriguez Pino
  3. David J Wiley
  4. Maitreyi E Das
  5. Chuan Chen
  6. Tetsuya Goshima
  7. Kazunori Kume
  8. Dai Hirata
  9. Takashi Toda
  10. Fulvia Verde  Is a corresponding author
  1. University of Miami School of Medicine, United States
  2. The University of Tennessee, United States
  3. National Research Institute of Brewing, Japan
  4. Hiroshima University, Japan
  5. The Francis Crick Institute, United Kingdom

Abstract

RNA-binding proteins contribute to the formation of ribonucleoprotein (RNP) granules by phase transition, but regulatory mechanisms are not fully understood. Conserved fission yeast NDR (Nuclear Dbf2-Related) kinase Orb6 governs cell morphogenesis in part by spatially controlling Cdc42 GTPase. Here we describe a novel, independent function for Orb6 kinase in negatively regulating the recruitment of RNA-binding protein Sts5 into RNPs to promote polarized cell growth. We find that Orb6 kinase inhibits Sts5 recruitment into granules, its association with processing (P) bodies, and degradation of Sts5-bound mRNAs by promoting Sts5 interaction with 14-3-3 protein Rad24. Many Sts5-bound mRNAs encode essential factors for polarized cell growth, and Orb6 kinase spatially and temporally controls the extent of Sts5 granule formation. Disruption of this control system affects cell morphology and alters the pattern of polarized cell growth, revealing a role for Orb6 kinase in the spatial control of translational repression that enables normal cell morphogenesis.

Article and author information

Author details

  1. Illyce Nuñez

    Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Marbelys Rodriguez Pino

    Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. David J Wiley

    Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Maitreyi E Das

    Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Chuan Chen

    Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Tetsuya Goshima

    National Research Institute of Brewing, Higashi-Hiroshima, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Kazunori Kume

    Department of Molecular Biotechnology, Hiroshima University, Higashi-Hiroshima, Japan
    Competing interests
    The authors declare that no competing interests exist.
  8. Dai Hirata

    Department of Molecular Biotechnology, Hiroshima University, Higashi-Hiroshima, Japan
    Competing interests
    The authors declare that no competing interests exist.
  9. Takashi Toda

    The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Fulvia Verde

    Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, United States
    For correspondence
    fverde@miami.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2575-0823

Funding

National Institutes of Health (GM095867)

  • Marbelys Rodriguez Pino
  • David J Wiley
  • Maitreyi E Das
  • Chuan Chen
  • Fulvia Verde

National Science Foundation (745129)

  • Maitreyi E Das
  • Fulvia Verde

Cancer Research UK

  • Takashi Toda

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Nuñez et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,178
    views
  • 446
    downloads
  • 24
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Illyce Nuñez
  2. Marbelys Rodriguez Pino
  3. David J Wiley
  4. Maitreyi E Das
  5. Chuan Chen
  6. Tetsuya Goshima
  7. Kazunori Kume
  8. Dai Hirata
  9. Takashi Toda
  10. Fulvia Verde
(2016)
Spatial control of translation repression and polarized growth by conserved NDR kinase Orb6 and RNA-binding protein Sts5
eLife 5:e14216.
https://doi.org/10.7554/eLife.14216

Share this article

https://doi.org/10.7554/eLife.14216

Further reading

    1. Cell Biology
    Tomoharu Kanie, Beibei Liu ... Peter K Jackson
    Research Article Updated

    Distal appendages are ninefold symmetric blade-like structures attached to the distal end of the mother centriole. These structures are critical for the formation of the primary cilium, by regulating at least four critical steps: preciliary vesicle recruitment, recruitment and initiation of intraflagellar transport (IFT), and removal of CP110. While specific proteins that localize to the distal appendages have been identified, how exactly each protein functions to achieve the multiple roles of the distal appendages is poorly understood. Here, we comprehensively analyze known and newly discovered distal appendage proteins (CEP83, SCLT1, CEP164, TTBK2, FBF1, CEP89, KIZ, ANKRD26, PIDD1, LRRC45, NCS1, CEP15) for their precise localization, order of recruitment, and their roles in each step of cilia formation. Using CRISPR-Cas9 knockouts, we show that the order of the recruitment of the distal appendage proteins is highly interconnected and a more complex hierarchy. Our analysis highlights two protein modules, CEP83-SCLT1 and CEP164-TTBK2, as critical for structural assembly of distal appendages. Functional assays revealed that CEP89 selectively functions in the RAB34+ vesicle recruitment, while deletion of the integral components, CEP83-SCLT1-CEP164-TTBK2, severely compromised all four steps of cilium formation. Collectively, our analyses provide a more comprehensive view of the organization and the function of the distal appendage, paving the way for molecular understanding of ciliary assembly.

    1. Cell Biology
    2. Medicine
    Slaven Crnkovic, Helene Thekkekara Puthenparampil ... Grazyna Kwapiszewska
    Research Article

    Background:

    Pulmonary vascular remodeling is a progressive pathological process characterized by functional alterations within pulmonary artery smooth muscle cells (PASMCs) and adventitial fibroblasts (PAAFs). Mechanisms driving the transition to a diseased phenotype remain elusive.

    Methods:

    We combined transcriptomic and proteomic profiling with phenotypic characterization of source-matched cells from healthy controls and individuals with idiopathic pulmonary arterial hypertension (IPAH). Bidirectional cellular crosstalk was examined using direct and indirect co-culture models, and phenotypic responses were assessed via transcriptome analysis.

    Results:

    PASMC and PAAF undergo distinct phenotypic shifts during pulmonary vascular remodeling, with limited shared features, such as reduced mitochondrial content and hyperpolarization. IPAH-PASMC exhibit increased glycosaminoglycan production and downregulation of contractile machinery, while IPAH-PAAF display a hyperproliferative phenotype. We identified alterations in extracellular matrix components, including laminin and collagen, alongside pentraxin-3 and hepatocyte growth factor, as potential regulators of PASMC phenotypic transitions mediated by PAAF.

    Conclusions:

    While PASMCs and PAAFs retain their core cellular identities, they acquire distinct disease-associated states. These findings provide new insights into the dynamic interplay of pulmonary vascular mesenchymal cells in disease pathogenesis.

    Funding:

    This work was supported by Cardio-Pulmonary Institute EXC 2026 390649896 (GK) and Austrian Science Fund (FWF) grant I 4651-B (SC).