Spatial control of translation repression and polarized growth by conserved NDR kinase Orb6 and RNA-binding protein Sts5

  1. Illyce Nuñez
  2. Marbelys Rodriguez Pino
  3. David J Wiley
  4. Maitreyi E Das
  5. Chuan Chen
  6. Tetsuya Goshima
  7. Kazunori Kume
  8. Dai Hirata
  9. Takashi Toda
  10. Fulvia Verde  Is a corresponding author
  1. University of Miami School of Medicine, United States
  2. The University of Tennessee, United States
  3. National Research Institute of Brewing, Japan
  4. Hiroshima University, Japan
  5. The Francis Crick Institute, United Kingdom

Abstract

RNA-binding proteins contribute to the formation of ribonucleoprotein (RNP) granules by phase transition, but regulatory mechanisms are not fully understood. Conserved fission yeast NDR (Nuclear Dbf2-Related) kinase Orb6 governs cell morphogenesis in part by spatially controlling Cdc42 GTPase. Here we describe a novel, independent function for Orb6 kinase in negatively regulating the recruitment of RNA-binding protein Sts5 into RNPs to promote polarized cell growth. We find that Orb6 kinase inhibits Sts5 recruitment into granules, its association with processing (P) bodies, and degradation of Sts5-bound mRNAs by promoting Sts5 interaction with 14-3-3 protein Rad24. Many Sts5-bound mRNAs encode essential factors for polarized cell growth, and Orb6 kinase spatially and temporally controls the extent of Sts5 granule formation. Disruption of this control system affects cell morphology and alters the pattern of polarized cell growth, revealing a role for Orb6 kinase in the spatial control of translational repression that enables normal cell morphogenesis.

Article and author information

Author details

  1. Illyce Nuñez

    Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Marbelys Rodriguez Pino

    Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. David J Wiley

    Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Maitreyi E Das

    Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Chuan Chen

    Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Tetsuya Goshima

    National Research Institute of Brewing, Higashi-Hiroshima, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Kazunori Kume

    Department of Molecular Biotechnology, Hiroshima University, Higashi-Hiroshima, Japan
    Competing interests
    The authors declare that no competing interests exist.
  8. Dai Hirata

    Department of Molecular Biotechnology, Hiroshima University, Higashi-Hiroshima, Japan
    Competing interests
    The authors declare that no competing interests exist.
  9. Takashi Toda

    The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Fulvia Verde

    Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, United States
    For correspondence
    fverde@miami.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2575-0823

Funding

National Institutes of Health (GM095867)

  • Marbelys Rodriguez Pino
  • David J Wiley
  • Maitreyi E Das
  • Chuan Chen
  • Fulvia Verde

National Science Foundation (745129)

  • Maitreyi E Das
  • Fulvia Verde

Cancer Research UK

  • Takashi Toda

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Nuñez et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,156
    views
  • 445
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Illyce Nuñez
  2. Marbelys Rodriguez Pino
  3. David J Wiley
  4. Maitreyi E Das
  5. Chuan Chen
  6. Tetsuya Goshima
  7. Kazunori Kume
  8. Dai Hirata
  9. Takashi Toda
  10. Fulvia Verde
(2016)
Spatial control of translation repression and polarized growth by conserved NDR kinase Orb6 and RNA-binding protein Sts5
eLife 5:e14216.
https://doi.org/10.7554/eLife.14216

Share this article

https://doi.org/10.7554/eLife.14216

Further reading

    1. Cell Biology
    Joan Chang, Adam Pickard ... Karl E Kadler
    Research Article

    Collagen-I fibrillogenesis is crucial to health and development, where dysregulation is a hallmark of fibroproliferative diseases. Here, we show that collagen-I fibril assembly required a functional endocytic system that recycles collagen-I to assemble new fibrils. Endogenous collagen production was not required for fibrillogenesis if exogenous collagen was available, but the circadian-regulated vacuolar protein sorting (VPS) 33b and collagen-binding integrin α11 subunit were crucial to fibrillogenesis. Cells lacking VPS33B secrete soluble collagen-I protomers but were deficient in fibril formation, thus secretion and assembly are separately controlled. Overexpression of VPS33B led to loss of fibril rhythmicity and overabundance of fibrils, which was mediated through integrin α11β1. Endocytic recycling of collagen-I was enhanced in human fibroblasts isolated from idiopathic pulmonary fibrosis, where VPS33B and integrin α11 subunit were overexpressed at the fibrogenic front; this correlation between VPS33B, integrin α11 subunit, and abnormal collagen deposition was also observed in samples from patients with chronic skin wounds. In conclusion, our study showed that circadian-regulated endocytic recycling is central to homeostatic assembly of collagen fibrils and is disrupted in diseases.

    1. Cell Biology
    Chun-Wei Chen, Jeffery B Chavez ... Bruce J Nicholson
    Research Article Updated

    Endometriosis is a debilitating disease affecting 190 million women worldwide and the greatest single contributor to infertility. The most broadly accepted etiology is that uterine endometrial cells retrogradely enter the peritoneum during menses, and implant and form invasive lesions in a process analogous to cancer metastasis. However, over 90% of women suffer retrograde menstruation, but only 10% develop endometriosis, and debate continues as to whether the underlying defect is endometrial or peritoneal. Processes implicated in invasion include: enhanced motility; adhesion to, and formation of gap junctions with, the target tissue. Endometrial stromal (ESCs) from 22 endometriosis patients at different disease stages show much greater invasiveness across mesothelial (or endothelial) monolayers than ESCs from 22 control subjects, which is further enhanced by the presence of EECs. This is due to the enhanced responsiveness of endometriosis ESCs to the mesothelium, which induces migration and gap junction coupling. ESC-PMC gap junction coupling is shown to be required for invasion, while coupling between PMCs enhances mesothelial barrier breakdown.