Spatial control of translation repression and polarized growth by conserved NDR kinase Orb6 and RNA-binding protein Sts5

  1. Illyce Nuñez
  2. Marbelys Rodriguez Pino
  3. David J Wiley
  4. Maitreyi E Das
  5. Chuan Chen
  6. Tetsuya Goshima
  7. Kazunori Kume
  8. Dai Hirata
  9. Takashi Toda
  10. Fulvia Verde  Is a corresponding author
  1. University of Miami School of Medicine, United States
  2. The University of Tennessee, United States
  3. National Research Institute of Brewing, Japan
  4. Hiroshima University, Japan
  5. The Francis Crick Institute, United Kingdom

Abstract

RNA-binding proteins contribute to the formation of ribonucleoprotein (RNP) granules by phase transition, but regulatory mechanisms are not fully understood. Conserved fission yeast NDR (Nuclear Dbf2-Related) kinase Orb6 governs cell morphogenesis in part by spatially controlling Cdc42 GTPase. Here we describe a novel, independent function for Orb6 kinase in negatively regulating the recruitment of RNA-binding protein Sts5 into RNPs to promote polarized cell growth. We find that Orb6 kinase inhibits Sts5 recruitment into granules, its association with processing (P) bodies, and degradation of Sts5-bound mRNAs by promoting Sts5 interaction with 14-3-3 protein Rad24. Many Sts5-bound mRNAs encode essential factors for polarized cell growth, and Orb6 kinase spatially and temporally controls the extent of Sts5 granule formation. Disruption of this control system affects cell morphology and alters the pattern of polarized cell growth, revealing a role for Orb6 kinase in the spatial control of translational repression that enables normal cell morphogenesis.

Article and author information

Author details

  1. Illyce Nuñez

    Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Marbelys Rodriguez Pino

    Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. David J Wiley

    Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Maitreyi E Das

    Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Chuan Chen

    Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Tetsuya Goshima

    National Research Institute of Brewing, Higashi-Hiroshima, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Kazunori Kume

    Department of Molecular Biotechnology, Hiroshima University, Higashi-Hiroshima, Japan
    Competing interests
    The authors declare that no competing interests exist.
  8. Dai Hirata

    Department of Molecular Biotechnology, Hiroshima University, Higashi-Hiroshima, Japan
    Competing interests
    The authors declare that no competing interests exist.
  9. Takashi Toda

    The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Fulvia Verde

    Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, United States
    For correspondence
    fverde@miami.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2575-0823

Funding

National Institutes of Health (GM095867)

  • Marbelys Rodriguez Pino
  • David J Wiley
  • Maitreyi E Das
  • Chuan Chen
  • Fulvia Verde

National Science Foundation (745129)

  • Maitreyi E Das
  • Fulvia Verde

Cancer Research UK

  • Takashi Toda

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. J Paul Taylor, St Jude Children's Research Hospital, United States

Publication history

  1. Received: January 8, 2016
  2. Accepted: July 28, 2016
  3. Accepted Manuscript published: July 30, 2016 (version 1)
  4. Version of Record published: September 5, 2016 (version 2)

Copyright

© 2016, Nuñez et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,002
    Page views
  • 431
    Downloads
  • 13
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Illyce Nuñez
  2. Marbelys Rodriguez Pino
  3. David J Wiley
  4. Maitreyi E Das
  5. Chuan Chen
  6. Tetsuya Goshima
  7. Kazunori Kume
  8. Dai Hirata
  9. Takashi Toda
  10. Fulvia Verde
(2016)
Spatial control of translation repression and polarized growth by conserved NDR kinase Orb6 and RNA-binding protein Sts5
eLife 5:e14216.
https://doi.org/10.7554/eLife.14216

Further reading

    1. Cell Biology
    2. Immunology and Inflammation
    Ana J Caetano, Yushi Redhead ... Paul T Sharpe
    Research Article Updated

    The interplay among different cells in a tissue is essential for maintaining homeostasis. Although disease states have been traditionally attributed to individual cell types, increasing evidence and new therapeutic options have demonstrated the primary role of multicellular functions to understand health and disease, opening new avenues to understand pathogenesis and develop new treatment strategies. We recently described the cellular composition and dynamics of the human oral mucosa; however, the spatial arrangement of cells is needed to better understand a morphologically complex tissue. Here, we link single-cell RNA sequencing, spatial transcriptomics, and high-resolution multiplex fluorescence in situ hybridisation to characterise human oral mucosa in health and oral chronic inflammatory disease. We deconvolved expression for resolution enhancement of spatial transcriptomic data and defined highly specialised epithelial and stromal compartments describing location-specific immune programs. Furthermore, we spatially mapped a rare pathogenic fibroblast population localised in a highly immunogenic region, responsible for lymphocyte recruitment through CXCL8 and CXCL10 and with a possible role in pathological angiogenesis through ALOX5AP. Collectively, our study provides a comprehensive reference for the study of oral chronic disease pathogenesis.

    1. Cell Biology
    2. Developmental Biology
    Eunjin Cho, Xiangguo Che ... Tae-Hoon Lee
    Research Article

    Peroxiredoxin 5 (Prdx5) is involved in pathophysiological regulation via the stress-induced cellular response. However, its function in the bone remains largely unknown. Here, we show that Prdx5 is involved in osteoclast and osteoblast differentiation, resulting in osteoporotic phenotypes in Prdx5 knockout (Prdx5Ko) male mice. To investigate the function of Prdx5 in the bone, osteoblasts were analyzed through immunoprecipitation (IP) and liquid chromatography combined with tandem mass spectrometry (LC–MS/MS) methods, while osteoclasts were analyzed through RNA-sequencing. Heterogeneous nuclear ribonucleoprotein K (hnRNPK) was identified as a potential binding partner of Prdx5 during osteoblast differentiation in vitro. Prdx5 acts as a negative regulator of hnRNPK-mediated osteocalcin (Bglap) expression. In addition, transcriptomic analysis revealed that in vitro differentiated osteoclasts from the bone marrow-derived macrophages of Prdx5Ko mice showed enhanced expression of several osteoclast-related genes. These findings indicate that Prdx5 might contribute to the maintenance of bone homeostasis by regulating osteoblast differentiation. This study proposes a new function of Prdx5 in bone remodeling that may be used in developing therapeutic strategies for bone diseases.