Cell type specificity of neurovascular coupling in cerebral cortex

  1. Hana Uhlirova
  2. Kıvılcım Kılıç
  3. Peifang Tian
  4. Martin Thunemann
  5. Michele Desjardins
  6. Payam A Saisan
  7. Sava Sakadžić
  8. Torbjørn V Ness
  9. Celine Mateo
  10. Qun Cheng
  11. Kimberly L Weldy
  12. Florence Razoux
  13. Matthieu Vanderberghe
  14. Jonathan A Cremonesi
  15. Christopher GL Ferri
  16. Krystal Nizar
  17. Vishnu B Sridhar
  18. Tyler C Steed
  19. Maxim Abashin
  20. Yeshaiahu Fainman
  21. Eliezer Masliah
  22. Srdjan Djurovic
  23. Ole Andreassen
  24. Gabriel A Silva
  25. David A Boas
  26. David Kleinfeld
  27. Richard B Buxton
  28. Gaute T Einevoll
  29. Anders M Dale
  30. Anna Devor  Is a corresponding author
  1. Faculty of Mechanical Engineering, Brno University of Technology and Institute of Physical Engineering, Czech Republic
  2. University of California, San Diego, United States
  3. Harvard Medical School, United States
  4. Norwegian University of Life Sciences, Norway
  5. Oslo University Hospital, Norway
  6. University of Oslo, Norway

Abstract

Identification of the cellular players and molecular messengers that communicate neuronal activity to the vasculature driving cerebral hemodynamics is important for (1) the basic understanding of cerebrovascular regulation and (2) interpretation of functional Magnetic Resonance Imaging (fMRI) signals. Using a combination of optogenetic stimulation and 2-photon imaging in mice, we demonstrate that selective activation of cortical excitation and inhibition elicits distinct vascular responses and identify the vasoconstrictive mechanism as Neuropeptide Y (NPY) acting on Y1 receptors. The latter implies that task-related negative Blood Oxygenation Level Dependent (BOLD) fMRI signals in the cerebral cortex under normal physiological conditions may be mainly driven by the NPY-positive inhibitory neurons. Further, the NPY-Y1 pathway may offer a potential therapeutic target in cerebrovascular disease.

Article and author information

Author details

  1. Hana Uhlirova

    CEITEC - Central European Institute of Technology, Faculty of Mechanical Engineering, Brno University of Technology and Institute of Physical Engineering, Brno, Czech Republic
    Competing interests
    No competing interests declared.
  2. Kıvılcım Kılıç

    Department of Neurosciences, University of California, San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  3. Peifang Tian

    Department of Neurosciences, University of California, San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  4. Martin Thunemann

    Department of Radiology, University of California, San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  5. Michele Desjardins

    Department of Radiology, University of California, San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  6. Payam A Saisan

    Department of Neurosciences, University of California, San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  7. Sava Sakadžić

    Martinos Center for Biomedical Imaging, Harvard Medical School, Charlestown, United States
    Competing interests
    No competing interests declared.
  8. Torbjørn V Ness

    Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, Ås, Norway
    Competing interests
    No competing interests declared.
  9. Celine Mateo

    Department of Physics, University of California, San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  10. Qun Cheng

    Department of Neurosciences, University of California, San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  11. Kimberly L Weldy

    Department of Neurosciences, University of California, San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  12. Florence Razoux

    Department of Neurosciences, University of California, San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  13. Matthieu Vanderberghe

    Department of Radiology, University of California, San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  14. Jonathan A Cremonesi

    Biology Undergraduate Program, University of California, San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  15. Christopher GL Ferri

    Department of Neurosciences, University of California, San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  16. Krystal Nizar

    Neurosciences Graduate Program, University of California, San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  17. Vishnu B Sridhar

    Department of Bioengineering, University of California, San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  18. Tyler C Steed

    Neurosciences Graduate Program, University of California, San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  19. Maxim Abashin

    Department of Electrical and Computer Engineering, University of California, San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  20. Yeshaiahu Fainman

    Department of Electrical and Computer Engineering, University of California, San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  21. Eliezer Masliah

    Department of Neurosciences, University of California, San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  22. Srdjan Djurovic

    Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
    Competing interests
    No competing interests declared.
  23. Ole Andreassen

    KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, University of Oslo, Oslo, Norway
    Competing interests
    No competing interests declared.
  24. Gabriel A Silva

    Department of Bioengineering, University of California, San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  25. David A Boas

    Martinos Center for Biomedical Imaging, Harvard Medical School, Charlestown, United States
    Competing interests
    No competing interests declared.
  26. David Kleinfeld

    Department of Physics, University of California, San Diego, San Diego, United States
    Competing interests
    David Kleinfeld, Reviewing editor, eLife.
  27. Richard B Buxton

    Department of Radiology, University of California, San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  28. Gaute T Einevoll

    Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, Ås, Norway
    Competing interests
    No competing interests declared.
  29. Anders M Dale

    Department of Radiology, University of California, San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  30. Anna Devor

    Department of Radiology, University of California, San Diego, San Diego, United States
    For correspondence
    adevor@ucsd.edu
    Competing interests
    No competing interests declared.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#S07360, S14275) of the University of California San Diego.

Copyright

© 2016, Uhlirova et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,368
    views
  • 1,481
    downloads
  • 180
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hana Uhlirova
  2. Kıvılcım Kılıç
  3. Peifang Tian
  4. Martin Thunemann
  5. Michele Desjardins
  6. Payam A Saisan
  7. Sava Sakadžić
  8. Torbjørn V Ness
  9. Celine Mateo
  10. Qun Cheng
  11. Kimberly L Weldy
  12. Florence Razoux
  13. Matthieu Vanderberghe
  14. Jonathan A Cremonesi
  15. Christopher GL Ferri
  16. Krystal Nizar
  17. Vishnu B Sridhar
  18. Tyler C Steed
  19. Maxim Abashin
  20. Yeshaiahu Fainman
  21. Eliezer Masliah
  22. Srdjan Djurovic
  23. Ole Andreassen
  24. Gabriel A Silva
  25. David A Boas
  26. David Kleinfeld
  27. Richard B Buxton
  28. Gaute T Einevoll
  29. Anders M Dale
  30. Anna Devor
(2016)
Cell type specificity of neurovascular coupling in cerebral cortex
eLife 5:e14315.
https://doi.org/10.7554/eLife.14315

Share this article

https://doi.org/10.7554/eLife.14315

Further reading

    1. Developmental Biology
    2. Neuroscience
    Odessa R Yabut, Jessica Arela ... Samuel J Pleasure
    Research Article

    Mutations in Sonic Hedgehog (SHH) signaling pathway genes, for example, Suppressor of Fused (SUFU), drive granule neuron precursors (GNP) to form medulloblastomas (MBSHH). However, how different molecular lesions in the Shh pathway drive transformation is frequently unclear, and SUFU mutations in the cerebellum seem distinct. In this study, we show that fibroblast growth factor 5 (FGF5) signaling is integral for many infantile MBSHH cases and that FGF5 expression is uniquely upregulated in infantile MBSHH tumors. Similarly, mice lacking SUFU (Sufu-cKO) ectopically express Fgf5 specifically along the secondary fissure where GNPs harbor preneoplastic lesions and show that FGFR signaling is also ectopically activated in this region. Treatment with an FGFR antagonist rescues the severe GNP hyperplasia and restores cerebellar architecture. Thus, direct inhibition of FGF signaling may be a promising and novel therapeutic candidate for infantile MBSHH.

    1. Neuroscience
    Lanfang Liu, Jiahao Jiang ... Guosheng Ding
    Research Article

    Speech comprehension involves the dynamic interplay of multiple cognitive processes, from basic sound perception, to linguistic encoding, and finally to complex semantic-conceptual interpretations. How the brain handles the diverse streams of information processing remains poorly understood. Applying Hidden Markov Modeling to fMRI data obtained during spoken narrative comprehension, we reveal that the whole brain networks predominantly oscillate within a tripartite latent state space. These states are, respectively, characterized by high activities in the sensory-motor (State #1), bilateral temporal (State #2), and default mode networks (DMN; State #3) regions, with State #2 acting as a transitional hub. The three states are selectively modulated by the acoustic, word-level semantic, and clause-level semantic properties of the narrative. Moreover, the alignment with both the best performer and the group-mean in brain state expression can predict participants’ narrative comprehension scores measured from the post-scan recall. These results are reproducible with different brain network atlas and generalizable to two datasets consisting of young and older adults. Our study suggests that the brain underlies narrative comprehension by switching through a tripartite state space, with each state probably dedicated to a specific component of language faculty, and effective narrative comprehension relies on engaging those states in a timely manner.