Cell type specificity of neurovascular coupling in cerebral cortex

  1. Hana Uhlirova
  2. Kıvılcım Kılıç
  3. Peifang Tian
  4. Martin Thunemann
  5. Michele Desjardins
  6. Payam A Saisan
  7. Sava Sakadžić
  8. Torbjørn V Ness
  9. Celine Mateo
  10. Qun Cheng
  11. Kimberly L Weldy
  12. Florence Razoux
  13. Matthieu Vanderberghe
  14. Jonathan A Cremonesi
  15. Christopher GL Ferri
  16. Krystal Nizar
  17. Vishnu B Sridhar
  18. Tyler C Steed
  19. Maxim Abashin
  20. Yeshaiahu Fainman
  21. Eliezer Masliah
  22. Srdjan Djurovic
  23. Ole Andreassen
  24. Gabriel A Silva
  25. David A Boas
  26. David Kleinfeld
  27. Richard B Buxton
  28. Gaute T Einevoll
  29. Anders M Dale
  30. Anna Devor  Is a corresponding author
  1. Faculty of Mechanical Engineering, Brno University of Technology and Institute of Physical Engineering, Czech Republic
  2. University of California, San Diego, United States
  3. Harvard Medical School, United States
  4. Norwegian University of Life Sciences, Norway
  5. Oslo University Hospital, Norway
  6. University of Oslo, Norway

Abstract

Identification of the cellular players and molecular messengers that communicate neuronal activity to the vasculature driving cerebral hemodynamics is important for (1) the basic understanding of cerebrovascular regulation and (2) interpretation of functional Magnetic Resonance Imaging (fMRI) signals. Using a combination of optogenetic stimulation and 2-photon imaging in mice, we demonstrate that selective activation of cortical excitation and inhibition elicits distinct vascular responses and identify the vasoconstrictive mechanism as Neuropeptide Y (NPY) acting on Y1 receptors. The latter implies that task-related negative Blood Oxygenation Level Dependent (BOLD) fMRI signals in the cerebral cortex under normal physiological conditions may be mainly driven by the NPY-positive inhibitory neurons. Further, the NPY-Y1 pathway may offer a potential therapeutic target in cerebrovascular disease.

Article and author information

Author details

  1. Hana Uhlirova

    CEITEC - Central European Institute of Technology, Faculty of Mechanical Engineering, Brno University of Technology and Institute of Physical Engineering, Brno, Czech Republic
    Competing interests
    No competing interests declared.
  2. Kıvılcım Kılıç

    Department of Neurosciences, University of California, San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  3. Peifang Tian

    Department of Neurosciences, University of California, San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  4. Martin Thunemann

    Department of Radiology, University of California, San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  5. Michele Desjardins

    Department of Radiology, University of California, San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  6. Payam A Saisan

    Department of Neurosciences, University of California, San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  7. Sava Sakadžić

    Martinos Center for Biomedical Imaging, Harvard Medical School, Charlestown, United States
    Competing interests
    No competing interests declared.
  8. Torbjørn V Ness

    Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, Ås, Norway
    Competing interests
    No competing interests declared.
  9. Celine Mateo

    Department of Physics, University of California, San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  10. Qun Cheng

    Department of Neurosciences, University of California, San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  11. Kimberly L Weldy

    Department of Neurosciences, University of California, San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  12. Florence Razoux

    Department of Neurosciences, University of California, San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  13. Matthieu Vanderberghe

    Department of Radiology, University of California, San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  14. Jonathan A Cremonesi

    Biology Undergraduate Program, University of California, San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  15. Christopher GL Ferri

    Department of Neurosciences, University of California, San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  16. Krystal Nizar

    Neurosciences Graduate Program, University of California, San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  17. Vishnu B Sridhar

    Department of Bioengineering, University of California, San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  18. Tyler C Steed

    Neurosciences Graduate Program, University of California, San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  19. Maxim Abashin

    Department of Electrical and Computer Engineering, University of California, San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  20. Yeshaiahu Fainman

    Department of Electrical and Computer Engineering, University of California, San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  21. Eliezer Masliah

    Department of Neurosciences, University of California, San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  22. Srdjan Djurovic

    Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
    Competing interests
    No competing interests declared.
  23. Ole Andreassen

    KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, University of Oslo, Oslo, Norway
    Competing interests
    No competing interests declared.
  24. Gabriel A Silva

    Department of Bioengineering, University of California, San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  25. David A Boas

    Martinos Center for Biomedical Imaging, Harvard Medical School, Charlestown, United States
    Competing interests
    No competing interests declared.
  26. David Kleinfeld

    Department of Physics, University of California, San Diego, San Diego, United States
    Competing interests
    David Kleinfeld, Reviewing editor, eLife.
  27. Richard B Buxton

    Department of Radiology, University of California, San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  28. Gaute T Einevoll

    Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, Ås, Norway
    Competing interests
    No competing interests declared.
  29. Anders M Dale

    Department of Radiology, University of California, San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  30. Anna Devor

    Department of Radiology, University of California, San Diego, San Diego, United States
    For correspondence
    adevor@ucsd.edu
    Competing interests
    No competing interests declared.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#S07360, S14275) of the University of California San Diego.

Copyright

© 2016, Uhlirova et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,417
    views
  • 1,487
    downloads
  • 180
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hana Uhlirova
  2. Kıvılcım Kılıç
  3. Peifang Tian
  4. Martin Thunemann
  5. Michele Desjardins
  6. Payam A Saisan
  7. Sava Sakadžić
  8. Torbjørn V Ness
  9. Celine Mateo
  10. Qun Cheng
  11. Kimberly L Weldy
  12. Florence Razoux
  13. Matthieu Vanderberghe
  14. Jonathan A Cremonesi
  15. Christopher GL Ferri
  16. Krystal Nizar
  17. Vishnu B Sridhar
  18. Tyler C Steed
  19. Maxim Abashin
  20. Yeshaiahu Fainman
  21. Eliezer Masliah
  22. Srdjan Djurovic
  23. Ole Andreassen
  24. Gabriel A Silva
  25. David A Boas
  26. David Kleinfeld
  27. Richard B Buxton
  28. Gaute T Einevoll
  29. Anders M Dale
  30. Anna Devor
(2016)
Cell type specificity of neurovascular coupling in cerebral cortex
eLife 5:e14315.
https://doi.org/10.7554/eLife.14315

Share this article

https://doi.org/10.7554/eLife.14315

Further reading

    1. Neuroscience
    Diellor Basha, Amirmohammad Azarmehri ... Igor Timofeev
    Research Article

    Memory consolidation during sleep depends on the interregional coupling of slow waves, spindles, and sharp wave-ripples (SWRs), across the cortex, thalamus, and hippocampus. The reuniens nucleus of the thalamus, linking the medial prefrontal cortex (mPFC) and the hippocampus, may facilitate interregional coupling during sleep. To test this hypothesis, we used intracellular, extracellular unit and local field potential recordings in anesthetized and head restrained non-anesthetized cats as well as computational modelling. Electrical stimulation of the reuniens evoked both antidromic and orthodromic intracellular mPFC responses, consistent with bidirectional functional connectivity between mPFC, reuniens and hippocampus in anesthetized state. The major finding obtained from behaving animals is that at least during NREM sleep hippocampo-reuniens-mPFC form a functional loop. SWRs facilitate the triggering of thalamic spindles, which later reach neocortex. In return, transition to mPFC UP states increase the probability of hippocampal SWRs and later modulate spindle amplitude. During REM sleep hippocampal theta activity provides periodic locking of reuniens neuronal firing and strong crosscorrelation at LFP level, but the values of reuniens-mPFC crosscorrelation was relatively low and theta power at mPFC was low. The neural mass model of this network demonstrates that the strength of bidirectional hippocampo-thalamic connections determines the coupling of oscillations, suggesting a mechanistic link between synaptic weights and the propensity for interregional synchrony. Our results demonstrate the presence of functional connectivity in hippocampo-thalamo-cortical network, but the efficacy of this connectivity is modulated by behavioral state.

    1. Neuroscience
    Maxine K Loh, Samantha J Hurh ... Mitchell F Roitman
    Research Article

    Mesolimbic dopamine encoding of non-contingent rewards and reward-predictive cues has been well established. Considerable debate remains over how mesolimbic dopamine responds to aversion and in the context of aversive conditioning. Inconsistencies may arise from the use of aversive stimuli that are transduced along different neural paths relative to reward or the conflation of responses to avoidance and aversion. Here, we made intraoral infusions of sucrose and measured how dopamine and behavioral responses varied to the changing valence of sucrose. Pairing intraoral sucrose with malaise via injection of lithium chloride (LiCl) caused the development of a conditioned taste aversion (CTA), which rendered the typically rewarding taste of sucrose aversive upon subsequent re-exposure. Following CTA formation, intraoral sucrose suppressed the activity of ventral tegmental area dopamine neurons (VTADA) and nucleus accumbens (NAc) dopamine release. This pattern of dopamine signaling after CTA is similar to intraoral infusions of innately aversive quinine and contrasts with responses to sucrose when it was novel or not paired with LiCl. Dopamine responses were negatively correlated with behavioral reactivity to intraoral sucrose and predicted home cage sucrose preference. Further, dopamine responses scaled with the strength of the CTA, which was increased by repeated LiCl pairings and weakened through extinction. Thus, the findings demonstrate differential dopamine encoding of the same taste stimulus according to its valence, which is aligned to distinct behavioral responses.