NOVA2-mediated RNA regulation is required for axonal pathfinding during development

  1. Yuhki Saito
  2. Soledad Miranda-Rottmann
  3. Matteo Ruggiu
  4. Christopher Y Park
  5. John J Fak
  6. Ru Zhong
  7. Jeremy S Duncan
  8. Brian A Fabella
  9. Harald J Junge
  10. Zhe Chen
  11. Roberto Araya
  12. Bernd Fritzsch
  13. A J Hudspeth
  14. Robert B Darnell  Is a corresponding author
  1. Howard Hughes Medical Institute, The Rockefeller University, United States
  2. New York Genome Center, United States
  3. University of Iowa, United States
  4. University of Colorado, Boulder, United States
  5. University of Montreal, Canada

Abstract

The neuron specific RNA-binding proteins NOVA1 and NOVA2 are highly homologous alternative splicing regulators. NOVA proteins regulate at least 700 alternative splicing events in vivo, yet relatively little is known about the biologic consequences of NOVA action and in particular about functional differences between NOVA1 and NOVA2. Transcriptome-wide searches for isoform-specific functions, using NOVA1 and NOVA2 specific HITS-CLIP and RNA-seq data from mouse cortex lacking either NOVA isoform, reveals that NOVA2 uniquely regulates alternative splicing events of a series of axon guidance related genes during cortical development. Corresponding axonal pathfinding defects were specific to NOVA2 deficiency: Nova2-/- but not Nova1-/- mice had agenesis of the corpus callosum, and axonal outgrowth defects specific to ventral motoneuron axons and efferent innervation of the cochlea. Thus we have discovered that NOVA2 uniquely regulates alternative splicing of a coordinate set of transcripts encoding key components in cortical, brainstem and spinal axon guidance/outgrowth pathways during neural differentiation, with severe functional consequences in vivo.

Article and author information

Author details

  1. Yuhki Saito

    Laboratory of Molecular Neuro-Oncology, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Soledad Miranda-Rottmann

    Laboratory of Molecular Neuro-Oncology, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Matteo Ruggiu

    Laboratory of Molecular Neuro-Oncology, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Christopher Y Park

    New York Genome Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. John J Fak

    Laboratory of Molecular Neuro-Oncology, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Ru Zhong

    Laboratory of Molecular Neuro-oncology, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Jeremy S Duncan

    Department of Biology, College of Liberal Arts and Sciences, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Brian A Fabella

    Laboratory of Sensory Neuroscience, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Harald J Junge

    Department of MCDB, University of Colorado, Boulder, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Zhe Chen

    Department of MCDB, University of Colorado, Boulder, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Roberto Araya

    Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  12. Bernd Fritzsch

    Department of Biology, College of Liberal Arts and Sciences, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. A J Hudspeth

    Laboratory of Sensory Neuroscience, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Robert B Darnell

    Laboratory of Molecular Neuro-Oncology, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
    For correspondence
    darnelr@rockefeller.edu
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: This studies were performed in compliance with protocols (#14678 and #07069) approved by the Institutional Animal Care and Use Committee (IACUC) of the Rockefeller University or with protocols (13-185 and 15-002) approved by the Comité de déontologie de l'expérimentation sur les animaux (CDEA) of the Univeristy of Montreal.

Copyright

© 2016, Saito et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,558
    views
  • 964
    downloads
  • 97
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yuhki Saito
  2. Soledad Miranda-Rottmann
  3. Matteo Ruggiu
  4. Christopher Y Park
  5. John J Fak
  6. Ru Zhong
  7. Jeremy S Duncan
  8. Brian A Fabella
  9. Harald J Junge
  10. Zhe Chen
  11. Roberto Araya
  12. Bernd Fritzsch
  13. A J Hudspeth
  14. Robert B Darnell
(2016)
NOVA2-mediated RNA regulation is required for axonal pathfinding during development
eLife 5:e14371.
https://doi.org/10.7554/eLife.14371

Share this article

https://doi.org/10.7554/eLife.14371

Further reading

    1. Neuroscience
    Tanja Fuchsberger, Imogen Stockwell ... Ole Paulsen
    Research Advance

    The reward and novelty-related neuromodulator dopamine plays an important role in hippocampal long-term memory, which is thought to involve protein-synthesis-dependent synaptic plasticity. However, the direct effects of dopamine on protein synthesis, and the functional implications of newly synthesised proteins for synaptic plasticity, have not yet been investigated. We have previously reported that timing-dependent synaptic depression (t-LTD) can be converted into potentiation by dopamine application during synaptic stimulation (Brzosko et al., 2015) or postsynaptic burst activation (Fuchsberger et al., 2022). Here, we show that dopamine increases protein synthesis in mouse hippocampal CA1 neurons, enabling dopamine-dependent long-term potentiation (DA-LTP), which is mediated via the Ca2+-sensitive adenylate cyclase (AC) subtypes 1/8, cAMP, and cAMP-dependent protein kinase (PKA). We found that neuronal activity is required for the dopamine-induced increase in protein synthesis. Furthermore, dopamine induced a protein-synthesis-dependent increase in the AMPA receptor subunit GluA1, but not GluA2. We found that DA-LTP is absent in GluA1 knock-out mice and that it requires calcium-permeable AMPA receptors. Taken together, our results suggest that dopamine together with neuronal activity controls synthesis of plasticity-related proteins, including GluA1, which enable DA-LTP via a signalling pathway distinct from that of conventional LTP.

    1. Neuroscience
    Martina Held, Rituja S Bisen ... Jan M Ache
    Research Article

    Insulin plays a critical role in maintaining metabolic homeostasis. Since metabolic demands are highly dynamic, insulin release needs to be constantly adjusted. These adjustments are mediated by different pathways, most prominently the blood glucose level, but also by feedforward signals from motor circuits and different neuromodulatory systems. Here, we analyze how neuromodulatory inputs control the activity of the main source of insulin in Drosophila – a population of insulin-producing cells (IPCs) located in the brain. IPCs are functionally analogous to mammalian pancreatic beta cells, but their location makes them accessible for in vivo recordings in intact animals. We characterized functional inputs to IPCs using single-nucleus RNA sequencing analysis, anatomical receptor expression mapping, connectomics, and an optogenetics-based ‘intrinsic pharmacology’ approach. Our results show that the IPC population expresses a variety of receptors for neuromodulators and classical neurotransmitters. Interestingly, IPCs exhibit heterogeneous receptor profiles, suggesting that the IPC population can be modulated differentially. This is supported by electrophysiological recordings from IPCs, which we performed while activating different populations of modulatory neurons. Our analysis revealed that some modulatory inputs have heterogeneous effects on the IPC activity, such that they inhibit one subset of IPCs, while exciting another. Monitoring calcium activity across the IPC population uncovered that these heterogeneous responses occur simultaneously. Certain neuromodulatory populations shifted the IPC population activity towards an excited state, while others shifted it towards inhibition. Taken together, we provide a comprehensive, multi-level analysis of neuromodulation in the insulinergic system of Drosophila.