1. Neuroscience
Download icon

Anatomical organization of presubicular head-direction circuits

  1. Patricia Preston-Ferrer
  2. Stefano Coletta
  3. Markus Frey
  4. Andrea Burgalossi  Is a corresponding author
  1. Werner-Reichardt Centre for Integrative Neuroscience, Germany
Research Article
  • Cited 25
  • Views 2,024
  • Annotations
Cite this article as: eLife 2016;5:e14592 doi: 10.7554/eLife.14592

Abstract

Neurons coding for head-direction are crucial for spatial navigation. Here we explored the cellular basis of head-direction coding in the rat dorsal presubiculum (PreS). We found that layer2 is composed of two principal cell populations (calbindin-positive and calbindin-negative neurons) which targeted the contralateral PreS and retrosplenial cortex, respectively. Layer3 pyramidal neurons projected to the medial entorhinal cortex (MEC). By juxtacellularly recording PreS neurons in awake rats during passive-rotation, we found that head-direction responses were preferentially contributed by layer3 pyramidal cells, whose long-range axons branched within layer3 of the MEC. In contrast, layer2 neurons displayed distinct spike-shapes, were not modulated by head-direction but rhythmically-entrained by theta-oscillations. Fast-spiking interneurons showed only weak directionality and theta-rhythmicity, but were significantly modulated by angular velocity. Our data thus indicate that PreS neurons differentially contribute to head-direction coding, and point to a cell-type- and layer-specific routing of directional and non-directional information to downstream cortical targets.

Article and author information

Author details

  1. Patricia Preston-Ferrer

    Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Stefano Coletta

    Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Markus Frey

    Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Andrea Burgalossi

    Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
    For correspondence
    andrea.burgalossi@cin.uni-tuebingen.de
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All experimental procedures were performed according to the German guidelines on animal welfare and approved by the local institution in charge of experiments using animals (Regierungspraesidium Tuebingen, permit numbers CIN2/14, CIN5/14 and CIN8/14).

Reviewing Editor

  1. Howard Eichenbaum, Boston University, United States

Publication history

  1. Received: January 21, 2016
  2. Accepted: June 9, 2016
  3. Accepted Manuscript published: June 10, 2016 (version 1)
  4. Version of Record published: June 29, 2016 (version 2)

Copyright

© 2016, Preston-Ferrer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,024
    Page views
  • 512
    Downloads
  • 25
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Caroline S Lee et al.
    Research Article

    Learning about temporal structure is adaptive because it enables the generation of expectations. We examined how the brain uses experience in structured environments to anticipate upcoming events. During fMRI, individuals watched a 90-second movie clip six times. Using a Hidden Markov Model applied to searchlights across the whole brain, we identified temporal shifts between activity patterns evoked by the first vs. repeated viewings of the movie clip. In many regions throughout the cortex, neural activity patterns for repeated viewings shifted to precede those of initial viewing by up to 15 seconds. This anticipation varied hierarchically in a posterior (less anticipation) to anterior (more anticipation) fashion. We also identified specific regions in which the timing of the brain's event boundaries were related to those of human-labeled event boundaries, with the timing of this relationship shifting on repeated viewings. With repeated viewing, the brain's event boundaries came to precede human-annotated boundaries by 1-4 seconds on average. Together, these results demonstrate a hierarchy of anticipatory signals in the human brain and link them to subjective experiences of events.

    1. Neuroscience
    Hamid Karimi-Rouzbahani et al.
    Research Article Updated

    There are many monitoring environments, such as railway control, in which lapses of attention can have tragic consequences. Problematically, sustained monitoring for rare targets is difficult, with more misses and longer reaction times over time. What changes in the brain underpin these ‘vigilance decrements’? We designed a multiple-object monitoring (MOM) paradigm to examine how the neural representation of information varied with target frequency and time performing the task. Behavioural performance decreased over time for the rare target (monitoring) condition, but not for a frequent target (active) condition. This was mirrored in neural decoding using magnetoencephalography: coding of critical information declined more during monitoring versus active conditions along the experiment. We developed new analyses that can predict behavioural errors from the neural data more than a second before they occurred. This facilitates pre-empting behavioural errors due to lapses in attention and provides new insight into the neural correlates of vigilance decrements.